Early embryogenesis is a remarkable example of how a stem cell arises from terminally differentiated cells. The gametes are non-dividing haploid cells that upon fertilization initiate the functional conversion of their genomes into a single embryonic one. Particularly, the zygote has to resume the mitotic cell cycle, to remodel the parental chromatin, to activate transcription, and to initiate the embryonic developmental program, which requires acquisition of totipotency of the early blastomeres. Evidence gathered in several organisms demonstrates that translational activation of dormant maternal mRNAs is crucial to set in motion the molecular mechanisms of development. To investigate such mechanisms, we have focused our attention on two aspects: a) the identification of maternal mRNAs recruited for translation at the onset of embryogenesis; b) the role played by the RNA-binding protein Sam68 in this process. a) The oocyte is transcriptionally inactive throughout the meiotic divisions and the first embryonic cell cycle. In order to identify the maternal mRNAs involved in early embryogenesis we isolated the polysomes from two different developmental stages: the ovulated oocytes arrested in metaphase II (MII oocytes) and zygotes at the pronuclear stage (PN embryos). Purified mRNAs from the polysomal fractions were analysed by microarrays. Comparative analyses were performed using both DAVID database screen and manual analysis based on the NCBI database. These analyses allowed us to group RNAs in specific functional categories and pointed out some interesting differences among the two stages examined. In MII oocytes the polysomes are enriched with mRNAs that encode for proteins involved in metabolism and ribosome biogenesis, suggesting that the ovulated oocytes are mainly involved in maintaining their energy status awaiting for fertilization. On the other hand, after fertilization the polysomes become enriched with RNAs coding for proteins involved in cell cycle, chromatin remodelling and transcription. Particularly the chromatin remodelling group includes some interesting genes as Epc1 and 2, Nalp9b, Suv39h1 and Metll8 which could play relevant role in early embryogenesis and totipotency acquisition. b) Sam68 belongs to the STAR family of RNA-binding proteins, which play evolutionarily conserved functions in development. We have investigated the expression and function of this protein during early embryogenesis. Sam68 localizes in the germinal vesicle of GV oocytes, and after the nuclear breakdown, its levels in the oocyte decrease. Residual Sam68 remains in the cytoplasm during the first meiotic division, until the cytostatic arrest. At fertilization, Sam68 localizes in the cytoplasm until the complete formation of pronuclei. During each mitotic division, Sam68 shuttles from the nucleus to the cytoplasm, and then slowly re-enters the nucleus. To understand the function of Sam68, we knocked-down its expression in vivo by microinjecting a double stranded RNA in zygotes at pronuclear stage. Embryos were cultured up to 96 hours after fertilization, when most of the control embryos had reached the blastocyst stage. We observed that depletion of Sam68 strongly affected pre-implantation development, lowering the rate of blastocyst formation (40% versus 80% in control embryos). Immunofluorescence experiments have shown that Sam68 associates with translation initiation factors (eIF4F complex ) in the zygote, indicating that this RNA-binding protein could be involved in the cytoplasmic utilization of specific maternal mRNAs.
L’embriogenesi iniziale è un ottimo esempio di acquisizione della totipotenza da parte di una cellula staminale a partire da cellule terminalmente differenziate. I gameti sono cellule aploidi non più in grado di dividersi, che dopo la fecondazione uniscono il loro genoma convertendolo in uno embrionale. Lo zigote deve riprendere il ciclo cellulare mitotico, rimodellare la cromatina, attivare la trascrizione e iniziare il programma di sviluppo embrionale, che richiede l’acquisizione della totipotenza dei blastomeri. In diversi organismi modello l’attivazione traduzionale di RNA messaggeri materni quiescenti è importante per innescare i meccanismi molecolari dello sviluppo. Per studiare tali meccanismi, abbiamo focalizzato l’attenzione su due aspetti: a) l’identificazione di RNA materni reclutati per la traduzione all’inizio dell’embriogenesi; b) il ruolo svolto in questo processo dalla RNA-binding protein Sam68. a) L’ovocita è trascrizionalmente inattivo durante le divisioni meiotiche e nel primo ciclo cellulare embrionale. Per identificare gli mRNA materni importanti per l’embriogenesi iniziale, abbiamo isolato i polisomi da due diversi stadi di sviluppo: ovociti maturi ovulati, fermi allo stadio di metafase II (MII) e zigoti allo stadio di pronuclei (PN). Gli mRNA purificati dalle frazioni polisomali sono stati analizzati tramite microarray. Abbiamo effettuato un’analisi comparativa utilizzando sia il database DAVID che un’analisi manuale utilizzando il database NCBI . Queste analisi ci hanno permesso di raggruppare gli RNA in specifiche categorie funzionali e hanno evidenziato alcune interessanti differenze tra i due stadi differenziativi esaminati. Negli MII i polisomi sono maggiormente arricchiti in RNA codificanti per proteine importanti per il metabolismo cellulare e la biogenesi dei ribosomi, suggerendo che gli ovociti ovulati sono prevalentemente impegnati nel mantenimento del loro stato energetico, in attesa della fecondazione. Al contrario, dopo la fecondazione, i polisomi sono arricchiti in RNA codificanti per proteine coinvolte nel ciclo cellulare, nel rimodellamento della cromatina e nella trascrizione. In particolare, la categoria “rimodellamento della cromatina” comprende geni quali Epc1 ed Epc2, Nalp9b Suv39h1 e Metll8 che potrebbero svolgere un ruolo importante nell’embriogenesi iniziale e nell’acquisizione della totipotenza. b) Sam68 fa parte della famiglia delle RNA binding protein chiamate STAR, le quali svolgono funzioni durante lo sviluppo che si sono conservate nel corso dell’evoluzione. Abbiamo studiato l’espressione e la funzione di Sam68 durante l’embriogenesi iniziale. Essa localizza nella vescicola germinale negli ovociti immaturi (GV) ed è rilasciata nel citoplasma durante la prima divisione meiotica, dove permane fino all’arresto citostatico. Dopo la fecondazione Sam68 localizza nel citoplasma fino alla completa formazione dei pronuclei. Durante ciascuna divisione mitotica Sam68 si sposta dal nucleo al citoplasma per poi tornare lentamente nel nucleo. Al fine di comprendere la funzione di Sam68, abbiamo ridotto la sua espressione in vivo microiniettando un RNA a doppio filamento negli zigoti allo stadio di pronuclei. Gli embrioni sono stati mantenuti in coltura fino a 96h dalla fecondazione, quando la maggior parte degli embrioni di controllo ha raggiunto lo stadio di blastocisti ed abbiamo osservato come la deplezione di Sam68 inficia fortemente lo sviluppo preimpianto, abbassando la percentuale di formazione delle balstocisti (40% contro 80% nei controlli). Esperimenti di immunofluorescenza hanno mostrato che Sam68 associa con i fattori di inizio della traduzione (complesso eIF4F) nello zigote, indicando che questa RNA-binding protein possa essere implicata nell’utilizzo citoplasmatico di specifici mRNA materni.
Bianchi, E. (2009). Translational control of gene expression at the onset of embryogenesis [10.58015/bianchi-enrica_phd2009-01-15].
Translational control of gene expression at the onset of embryogenesis
BIANCHI, ENRICA
2009-01-15
Abstract
Early embryogenesis is a remarkable example of how a stem cell arises from terminally differentiated cells. The gametes are non-dividing haploid cells that upon fertilization initiate the functional conversion of their genomes into a single embryonic one. Particularly, the zygote has to resume the mitotic cell cycle, to remodel the parental chromatin, to activate transcription, and to initiate the embryonic developmental program, which requires acquisition of totipotency of the early blastomeres. Evidence gathered in several organisms demonstrates that translational activation of dormant maternal mRNAs is crucial to set in motion the molecular mechanisms of development. To investigate such mechanisms, we have focused our attention on two aspects: a) the identification of maternal mRNAs recruited for translation at the onset of embryogenesis; b) the role played by the RNA-binding protein Sam68 in this process. a) The oocyte is transcriptionally inactive throughout the meiotic divisions and the first embryonic cell cycle. In order to identify the maternal mRNAs involved in early embryogenesis we isolated the polysomes from two different developmental stages: the ovulated oocytes arrested in metaphase II (MII oocytes) and zygotes at the pronuclear stage (PN embryos). Purified mRNAs from the polysomal fractions were analysed by microarrays. Comparative analyses were performed using both DAVID database screen and manual analysis based on the NCBI database. These analyses allowed us to group RNAs in specific functional categories and pointed out some interesting differences among the two stages examined. In MII oocytes the polysomes are enriched with mRNAs that encode for proteins involved in metabolism and ribosome biogenesis, suggesting that the ovulated oocytes are mainly involved in maintaining their energy status awaiting for fertilization. On the other hand, after fertilization the polysomes become enriched with RNAs coding for proteins involved in cell cycle, chromatin remodelling and transcription. Particularly the chromatin remodelling group includes some interesting genes as Epc1 and 2, Nalp9b, Suv39h1 and Metll8 which could play relevant role in early embryogenesis and totipotency acquisition. b) Sam68 belongs to the STAR family of RNA-binding proteins, which play evolutionarily conserved functions in development. We have investigated the expression and function of this protein during early embryogenesis. Sam68 localizes in the germinal vesicle of GV oocytes, and after the nuclear breakdown, its levels in the oocyte decrease. Residual Sam68 remains in the cytoplasm during the first meiotic division, until the cytostatic arrest. At fertilization, Sam68 localizes in the cytoplasm until the complete formation of pronuclei. During each mitotic division, Sam68 shuttles from the nucleus to the cytoplasm, and then slowly re-enters the nucleus. To understand the function of Sam68, we knocked-down its expression in vivo by microinjecting a double stranded RNA in zygotes at pronuclear stage. Embryos were cultured up to 96 hours after fertilization, when most of the control embryos had reached the blastocyst stage. We observed that depletion of Sam68 strongly affected pre-implantation development, lowering the rate of blastocyst formation (40% versus 80% in control embryos). Immunofluorescence experiments have shown that Sam68 associates with translation initiation factors (eIF4F complex ) in the zygote, indicating that this RNA-binding protein could be involved in the cytoplasmic utilization of specific maternal mRNAs.File | Dimensione | Formato | |
---|---|---|---|
Tesi Enrica Bianchi.pdf
solo utenti autorizzati
Licenza:
Copyright degli autori
Dimensione
5.35 MB
Formato
Adobe PDF
|
5.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.