BACKGROUND There are two generally accepted strategies for treating multiple sclerosis (MS), preventing central nervous system (CNS) damage indirectly through immunomodulatory interventions and/or repairing CNS damage by promoting remyelination. Both approaches also provide neuroprotection since they can prevent, indirectly or directly, axonal damage. OBJECTIVE Recent experimental and clinical evidence indicates that the novel immunomodulatory drug laquinimod can exert a neuroprotective role in MS. Whether laquinimod-mediated neuroprotection is exerted directly on neuronal cells or indirectly via peripheral immunomodulation is still unclear. METHODS C57Bl/6 experimental autoimmune encephalomyelitis (EAE) mice, immunised with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, were treated for 26 days with subcutaneous daily injections of laquinimod (from 1 to 25 mg/kg). Patch clamp electrophysiology was performed on acute brain striatal slices from EAE mice treated with daily (25 mg/kg) laquinimod and on acute brain striatal slices from control mice bathed with laquinimod (1-30 µM). RESULTS Both preventive and therapeutic laquinimod treatment fully prevented the alterations of GABAergic synapses induced by EAE, the first limiting also glutamatergic synaptic alterations. This dual effect might, in turn, have limited glutamatergic excitotoxicity, a phenomenon previously observed early during EAE and possibly correlated with later axonal damage. Furthermore, laquinimod treatment also preserved cannabinoid CB1 receptor sensitivity, normally lost during EAE. Finally, laquinimod per se was able to regulate synaptic transmission by increasing inhibitory post-synaptic currents and, at the same time, reducing excitatory post-synaptic currents. CONCLUSIONS Our data suggest a novel neuroprotective mechanism by which laquinimod might in vivo protect from neuronal damage occurring as a consequence of inflammatory immune-mediated demyelination.

Ruffini, F., Rossi, S., Bergamaschi, A., Brambilla, E., Finardi, A., Motta, C., et al. (2012). Laquinimod prevents inflammation-induced synaptic alterations occurring in experimental autoimmune encephalomyelitis. MULTIPLE SCLEROSIS [10.1177/1352458512469698].

Laquinimod prevents inflammation-induced synaptic alterations occurring in experimental autoimmune encephalomyelitis

BERGAMASCHI, ANTONIO;CENTONZE, DIEGO;
2012-01-01

Abstract

BACKGROUND There are two generally accepted strategies for treating multiple sclerosis (MS), preventing central nervous system (CNS) damage indirectly through immunomodulatory interventions and/or repairing CNS damage by promoting remyelination. Both approaches also provide neuroprotection since they can prevent, indirectly or directly, axonal damage. OBJECTIVE Recent experimental and clinical evidence indicates that the novel immunomodulatory drug laquinimod can exert a neuroprotective role in MS. Whether laquinimod-mediated neuroprotection is exerted directly on neuronal cells or indirectly via peripheral immunomodulation is still unclear. METHODS C57Bl/6 experimental autoimmune encephalomyelitis (EAE) mice, immunised with myelin oligodendrocyte glycoprotein (MOG)35-55 peptide, were treated for 26 days with subcutaneous daily injections of laquinimod (from 1 to 25 mg/kg). Patch clamp electrophysiology was performed on acute brain striatal slices from EAE mice treated with daily (25 mg/kg) laquinimod and on acute brain striatal slices from control mice bathed with laquinimod (1-30 µM). RESULTS Both preventive and therapeutic laquinimod treatment fully prevented the alterations of GABAergic synapses induced by EAE, the first limiting also glutamatergic synaptic alterations. This dual effect might, in turn, have limited glutamatergic excitotoxicity, a phenomenon previously observed early during EAE and possibly correlated with later axonal damage. Furthermore, laquinimod treatment also preserved cannabinoid CB1 receptor sensitivity, normally lost during EAE. Finally, laquinimod per se was able to regulate synaptic transmission by increasing inhibitory post-synaptic currents and, at the same time, reducing excitatory post-synaptic currents. CONCLUSIONS Our data suggest a novel neuroprotective mechanism by which laquinimod might in vivo protect from neuronal damage occurring as a consequence of inflammatory immune-mediated demyelination.
2012
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Ruffini, F., Rossi, S., Bergamaschi, A., Brambilla, E., Finardi, A., Motta, C., et al. (2012). Laquinimod prevents inflammation-induced synaptic alterations occurring in experimental autoimmune encephalomyelitis. MULTIPLE SCLEROSIS [10.1177/1352458512469698].
Ruffini, F; Rossi, S; Bergamaschi, A; Brambilla, E; Finardi, A; Motta, C; Studer, V; Barbieri, F; De Chiara, V; Hayardeny, L; Comi, G; Centonze, D; Martino, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/73207
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 40
social impact