In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of combinatorial quadratic problems that are equivalent to the maxcut problem. Using the Gramian representation of a positive semidefinite matrix, the LRSDP problem can be formulated as the nonconvex nonlinear programming prob- lem of minimizing a quadratic function with quadratic equality constraints. For the solution of this problem we propose a continuously differentiable exact merit func- tion that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm. Finally, we test our code on an extended set of instances of the maxcut problem and we report comparisons with other existing codes.

Grippo, L., Palagi, L., Piccialli, V. (2011). An unconstrained minimization method for solving low rank SDP relaxations of the max cut problem. MATHEMATICAL PROGRAMMING, 126(1), 119-146 [10.1007/s10107-009-0275-8].

An unconstrained minimization method for solving low rank SDP relaxations of the max cut problem

PICCIALLI, VERONICA
2011-01-01

Abstract

In this paper we consider low-rank semidefinite programming (LRSDP) relaxations of combinatorial quadratic problems that are equivalent to the maxcut problem. Using the Gramian representation of a positive semidefinite matrix, the LRSDP problem can be formulated as the nonconvex nonlinear programming prob- lem of minimizing a quadratic function with quadratic equality constraints. For the solution of this problem we propose a continuously differentiable exact merit func- tion that exploits the special structure of the constraints and we use this function to define an efficient and globally convergent algorithm. Finally, we test our code on an extended set of instances of the maxcut problem and we report comparisons with other existing codes.
2011
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/09 - RICERCA OPERATIVA
English
Con Impact Factor ISI
Semidefinite programming; Low-rank factorization; Maxcut problem; Nonlinear programming; Exact penalty functions
http://link.springer.com/article/10.1007%2Fs10107-009-0275-8
Grippo, L., Palagi, L., Piccialli, V. (2011). An unconstrained minimization method for solving low rank SDP relaxations of the max cut problem. MATHEMATICAL PROGRAMMING, 126(1), 119-146 [10.1007/s10107-009-0275-8].
Grippo, L; Palagi, L; Piccialli, V
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
GrippoPalagiPiccialliMPA11.pdf

solo utenti autorizzati

Descrizione: Articolo come pubblicato
Licenza: Copyright dell'editore
Dimensione 332.28 kB
Formato Adobe PDF
332.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/70211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 10
social impact