An NAD(P)H-dependent reductase able to reduce a new class of cyclic unsaturated compounds named ketimines has been detected and purified 2500-fold from pig kidney. Some molecular and kinetic properties of this enzyme have been determined. The enzymatic reduction proceeds with a classical ping-pong mechanism and some results suggest that the true substrate has the ketiminic structure and is in equilibrium with the enaminic and keto-open forms. As previously described, ketimines arise from the deamination of a number of sulfur-containing amino acids, i.e. L-cystathionine, L-lanthionine and S-aminoethyl-L-cysteine, catalyzed by a widespread mammalian transaminase. The enzymatic reduction products of ketimines have been identified as cyclothionine, 1,4-thiomorpholine 3,5-dicarboxylic acid and 1,4-thiomorpholine 3-carboxylic acid. Some of these compounds have been detected in mammals, thus suggesting a possible role of this enzyme in their biosynthesis.
Nardini, M., Ricci, G., Caccuri, A.m., Solinas, S., Vesci, L., Cavallini, D. (1988). Purification and characterization of a ketimine-reducing enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY, 173(3), 689-694 [10.1111/j.1432-1033.1988.tb14053.x].
Purification and characterization of a ketimine-reducing enzyme
RICCI, GIORGIO;CACCURI, ANNA MARIA;
1988-05-02
Abstract
An NAD(P)H-dependent reductase able to reduce a new class of cyclic unsaturated compounds named ketimines has been detected and purified 2500-fold from pig kidney. Some molecular and kinetic properties of this enzyme have been determined. The enzymatic reduction proceeds with a classical ping-pong mechanism and some results suggest that the true substrate has the ketiminic structure and is in equilibrium with the enaminic and keto-open forms. As previously described, ketimines arise from the deamination of a number of sulfur-containing amino acids, i.e. L-cystathionine, L-lanthionine and S-aminoethyl-L-cysteine, catalyzed by a widespread mammalian transaminase. The enzymatic reduction products of ketimines have been identified as cyclothionine, 1,4-thiomorpholine 3,5-dicarboxylic acid and 1,4-thiomorpholine 3-carboxylic acid. Some of these compounds have been detected in mammals, thus suggesting a possible role of this enzyme in their biosynthesis.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.