Abnormal glutamate-dependent synaptic excitation contributes to neuronal damage in multiple sclerosis (MS). Little is known about the involvement of the GABA system in this disorder. Here we found that cerebrospinal fluid (CSF) from MS patients with enhanced brain lesions on magnetic resonance imaging inhibited GABA transmission in mouse brain slices. Enhanced IL-1β neuronal action was responsible for this effect, because IL-1β receptor antagonist blocked, and exogenous IL-1β mimicked the synaptic effect of inflamed CSF. Our results provide evidence that focal inflammation in MS perturbs the cytokine milieu within the circulating CSF, resulting in diffuse GABAergic alteration in neurons.
Rossi, S., Studer, V., Motta, C., De Chiara, V., Barbieri, F., Bernardi, G., et al. (2012). Inflammation inhibits GABA transmission in multiple sclerosis. MULTIPLE SCLEROSIS [10.1177/1352458512440207].
Inflammation inhibits GABA transmission in multiple sclerosis
Motta, C;BERNARDI, GIORGIO;CENTONZE, DIEGO
2012-03-14
Abstract
Abnormal glutamate-dependent synaptic excitation contributes to neuronal damage in multiple sclerosis (MS). Little is known about the involvement of the GABA system in this disorder. Here we found that cerebrospinal fluid (CSF) from MS patients with enhanced brain lesions on magnetic resonance imaging inhibited GABA transmission in mouse brain slices. Enhanced IL-1β neuronal action was responsible for this effect, because IL-1β receptor antagonist blocked, and exogenous IL-1β mimicked the synaptic effect of inflamed CSF. Our results provide evidence that focal inflammation in MS perturbs the cytokine milieu within the circulating CSF, resulting in diffuse GABAergic alteration in neurons.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.