Recent evidence has accumulated showing that activation of PLC-catalysed hydrolysis of phosphatidylcholine (PC-PLC) is a critical step in mitogenic signal transduction both in fibroblasts and in oocytes from Xenopus laevis. The products of ras genes activate PC-PLC, bind guanine nucleotides, have intrinsic GTPase activity, and are regulated by a GTPase-activating protein (GAP). It has been suggested that, in addition to its regulatory properties, GAP may also be necessary for ras function as a downstream effector molecule. In this study, evidence is presented that strongly suggests that the functional interaction between ras p21 and GAP is sufficient and necessary for activation of maturation promoting factor (MPF) H1-kinase activity in oocytes, and that PC hydrolysis is critically involved in this mechanism. Therefore, we identify GAP as a further step required for signalling through PC-PLC, and necessary for the control of oocyte maturation in response to ras p21/insulin but not to progesterone.

Dominguez, I., Marshall, M., Gibbs, J., García de Herreros, A., Cornet, M., Graziani, G., et al. (1991). Role of GTPase activating protein in mitogenic signalling through phosphatidylcholine-hydrolysing phospholipase C. EMBO JOURNAL, 10(11), 3215-3220.

Role of GTPase activating protein in mitogenic signalling through phosphatidylcholine-hydrolysing phospholipase C

GRAZIANI, GRAZIA;
1991-11-01

Abstract

Recent evidence has accumulated showing that activation of PLC-catalysed hydrolysis of phosphatidylcholine (PC-PLC) is a critical step in mitogenic signal transduction both in fibroblasts and in oocytes from Xenopus laevis. The products of ras genes activate PC-PLC, bind guanine nucleotides, have intrinsic GTPase activity, and are regulated by a GTPase-activating protein (GAP). It has been suggested that, in addition to its regulatory properties, GAP may also be necessary for ras function as a downstream effector molecule. In this study, evidence is presented that strongly suggests that the functional interaction between ras p21 and GAP is sufficient and necessary for activation of maturation promoting factor (MPF) H1-kinase activity in oocytes, and that PC hydrolysis is critically involved in this mechanism. Therefore, we identify GAP as a further step required for signalling through PC-PLC, and necessary for the control of oocyte maturation in response to ras p21/insulin but not to progesterone.
nov-1991
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/14 - FARMACOLOGIA
English
Con Impact Factor ISI
Animals; Recombinant Proteins; GTPase-Activating Proteins; Bacillus cereus; CDC2 Protein Kinase; ras GTPase-Activating Proteins; Hydrolysis; Xenopus laevis; Oncogene Protein p21(ras); Protamine Kinase; Phosphorylation; Maturation-Promoting Factor; Mitogens; Proteins; Phosphatidylcholines; Type C Phospholipases; Signal Transduction
Dominguez, I., Marshall, M., Gibbs, J., García de Herreros, A., Cornet, M., Graziani, G., et al. (1991). Role of GTPase activating protein in mitogenic signalling through phosphatidylcholine-hydrolysing phospholipase C. EMBO JOURNAL, 10(11), 3215-3220.
Dominguez, I; Marshall, M; Gibbs, J; García de Herreros, A; Cornet, M; Graziani, G; Diaz Meco, M; Johansen, T; Mccormick, F; Moscat, J
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/68035
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 39
social impact