Quinoxalinylethylpyridylthioureas (QXPTs) represent a new class of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) whose prototype is 6-FQXPT (6). Docking studies based on the three-dimensional structure of RT prompted the synthesis of novel heteroarylethylpyridylthioureas which were tested as anti- HIV agents. Several compounds proved to be potent broad-spectrum enzyme inhibitors and significantly inhibited HIV-1 replication in vitro. Their potency depends on the substituents and the nature of the heterocyclic skeleton linked to the ethyl spacer, and structure-activity relationships are discussed in terms of the possible interaction with the RT binding site. Although the new QXPTs analogues show potent antiviral activity, none of the compounds tested overcome the pharmacokinetic disadvantages inherent to ethylpyridylthioureidic antiviral agents, which in general have very low oral bioavailability. Through an integrated effort involving synthesis, docking studies, and biological and pharmacokinetic evaluation, we investigated the structural dependence of the poor bioavailability and rapid clearance within the thioureidic series of antivirals. Replacing the ethylthioureidic moiety with a hydrazine linker led to a new antiviral lead, offering promising pharmacological and pharmacokinetic properties in terms of antiviral activity and oral bioavailability.

Campiani, G., Aiello, F., Fabbrini, M., Morelli, E., Ramunno, A., Armaroli, S., et al. (2001). Quinoxalinylethylpyridylthioureas (QXPTs) as Potent Non-Nucleoside HIV-1 Reverse Transcriptase (RT) Inhibitors. Further SAR Studies and Identification of a Novel Orally Bioavailable Hydrazine-Based Antiviral Agent. JOURNAL OF MEDICINAL CHEMISTRY, 44(3), 305-315.

Quinoxalinylethylpyridylthioureas (QXPTs) as Potent Non-Nucleoside HIV-1 Reverse Transcriptase (RT) Inhibitors. Further SAR Studies and Identification of a Novel Orally Bioavailable Hydrazine-Based Antiviral Agent

BERGAMINI, ALBERTO;CAPOZZI, MARCELLA;MARINI, STEFANO;COLETTA, MASSIMILIANO;
2001-01-01

Abstract

Quinoxalinylethylpyridylthioureas (QXPTs) represent a new class of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase (RT) inhibitors (NNRTIs) whose prototype is 6-FQXPT (6). Docking studies based on the three-dimensional structure of RT prompted the synthesis of novel heteroarylethylpyridylthioureas which were tested as anti- HIV agents. Several compounds proved to be potent broad-spectrum enzyme inhibitors and significantly inhibited HIV-1 replication in vitro. Their potency depends on the substituents and the nature of the heterocyclic skeleton linked to the ethyl spacer, and structure-activity relationships are discussed in terms of the possible interaction with the RT binding site. Although the new QXPTs analogues show potent antiviral activity, none of the compounds tested overcome the pharmacokinetic disadvantages inherent to ethylpyridylthioureidic antiviral agents, which in general have very low oral bioavailability. Through an integrated effort involving synthesis, docking studies, and biological and pharmacokinetic evaluation, we investigated the structural dependence of the poor bioavailability and rapid clearance within the thioureidic series of antivirals. Replacing the ethylthioureidic moiety with a hydrazine linker led to a new antiviral lead, offering promising pharmacological and pharmacokinetic properties in terms of antiviral activity and oral bioavailability.
2001
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
HIV, antiviral
Campiani, G., Aiello, F., Fabbrini, M., Morelli, E., Ramunno, A., Armaroli, S., et al. (2001). Quinoxalinylethylpyridylthioureas (QXPTs) as Potent Non-Nucleoside HIV-1 Reverse Transcriptase (RT) Inhibitors. Further SAR Studies and Identification of a Novel Orally Bioavailable Hydrazine-Based Antiviral Agent. JOURNAL OF MEDICINAL CHEMISTRY, 44(3), 305-315.
Campiani, G; Aiello, F; Fabbrini, M; Morelli, E; Ramunno, A; Armaroli, S; Nacci, V; Garofalo, A; Greco, G; Novellino, E; Maga, G; Spadari, S; Bergamin...espandi
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
JMedChem2001.pdf

accesso aperto

Dimensione 215.68 kB
Formato Adobe PDF
215.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/67372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 107
  • ???jsp.display-item.citation.isi??? 100
social impact