The effect in vitro of some cytoplasmic structure and function inhibitors on the different stages of rabies virus infection was investigated. Treatment of fibroblasts (CER) and human neuroblastoma cells (IMR-32) with substances acting on low pH intracellular compartments (methylamine and monensin) prevented rabies virus genome delivery in the cytosol. An early inhibition of viral infection was also obtained in the presence of B and D cytochalasins and trifluoperazine which interact with microfilament structures. Treatment with colchicine and vinblastine did not affect rabies multiplication, suggesting that microtubules are not involved in this process. However, the multiplication of prebound virions did not take place in the presence of inhibitors of oxidative phosphorylation (sodium azide and CCCP) and of glycolysis (2-deoxy-D-glucose) indicating that rabies virus replication is largely energy-dependent in both host cells examined.
Conti, C., Superti, F., Divizia, M., Pana', A., Orsi, N. (1990). Effect of inhibitors of cytoplasmic structures and functions on rabies virus infection in vitro. COMPARATIVE IMMUNOLOGY, MICROBIOLOGY AND INFECTIOUS DISEASES, 13(3), 137-146.
Effect of inhibitors of cytoplasmic structures and functions on rabies virus infection in vitro
DIVIZIA, MAURIZIO;PANA', AUGUSTO;
1990-01-01
Abstract
The effect in vitro of some cytoplasmic structure and function inhibitors on the different stages of rabies virus infection was investigated. Treatment of fibroblasts (CER) and human neuroblastoma cells (IMR-32) with substances acting on low pH intracellular compartments (methylamine and monensin) prevented rabies virus genome delivery in the cytosol. An early inhibition of viral infection was also obtained in the presence of B and D cytochalasins and trifluoperazine which interact with microfilament structures. Treatment with colchicine and vinblastine did not affect rabies multiplication, suggesting that microtubules are not involved in this process. However, the multiplication of prebound virions did not take place in the presence of inhibitors of oxidative phosphorylation (sodium azide and CCCP) and of glycolysis (2-deoxy-D-glucose) indicating that rabies virus replication is largely energy-dependent in both host cells examined.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.