We consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.

Consideriamo un'ipersuperficie liscia di ℝⁿ⁺¹, con n≥2, e la sua evoluzione secondo una classe di flussi geometrici. La velocità di questi flussi ha direzione normale alla superficie e il modulo è una funzione simmetrica delle curvature principali. Inizialmente mostriamo alcune proprietà generali di questi flussi e calcoliamo l'equazione di evoluzione per una generica funzione omogenea delle curvature principali. In particolare applichiamo il flusso con velocità S=(H/(logH)), dove H è la curvatura media a meno di una costante, ad una superficie con curvatura media positiva per ottenere delle stime di convessità. Usando solamente il principio del massimo dimostriamo che, su un limite di riscalamenti delle superfici che si evolvono vicino alla singolarità, la parte negativa della curvatura scalare tende a zero. La parte successiva è dedicata allo studio di un'ipersuperficie convessa che si evolve secondo potenze della curvatura scalare: S=R^{p}, con p>1/2. Si dimostra che se la superficie iniziale soddisfa delle stime di "pinching" sulle curvature principali allora si contrae ad un punto in tempo finito e la forma delle superfici che si evolvono approssima sempre più quella di una sfera. In questo caso il grado di omogeneità, strettamente maggiore di uno, permette di concludere la dimostrazione della convergenza ad un "punto rotondo" tramite il solo principio del massimo, evitando l'uso di stime integrali. Viene anche costruito un esempio di superficie convessa che forma una singolarità di tipo "neck pinching". Infine studiamo il caso di un grafico intero su ℝⁿ con crescita al più lineare all'infinito e mostriamo che un grafico che si evolve secondo un qualsiasi flusso nella classe considerata rimane un grafico. Inoltre dimostriamo un risultato di esistenza per tempi lunghi per i flussi con velocità S=R^{p} con p≥1/2 e descriviamo delle soluzioni esplicite per grafici a simmetria di rotazione.

Alessandroni, R. (2008). Evolution of hypersurfaces by curvature functions.

### Evolution of hypersurfaces by curvature functions

#### Abstract

Consideriamo un'ipersuperficie liscia di ℝⁿ⁺¹, con n≥2, e la sua evoluzione secondo una classe di flussi geometrici. La velocità di questi flussi ha direzione normale alla superficie e il modulo è una funzione simmetrica delle curvature principali. Inizialmente mostriamo alcune proprietà generali di questi flussi e calcoliamo l'equazione di evoluzione per una generica funzione omogenea delle curvature principali. In particolare applichiamo il flusso con velocità S=(H/(logH)), dove H è la curvatura media a meno di una costante, ad una superficie con curvatura media positiva per ottenere delle stime di convessità. Usando solamente il principio del massimo dimostriamo che, su un limite di riscalamenti delle superfici che si evolvono vicino alla singolarità, la parte negativa della curvatura scalare tende a zero. La parte successiva è dedicata allo studio di un'ipersuperficie convessa che si evolve secondo potenze della curvatura scalare: S=R^{p}, con p>1/2. Si dimostra che se la superficie iniziale soddisfa delle stime di "pinching" sulle curvature principali allora si contrae ad un punto in tempo finito e la forma delle superfici che si evolvono approssima sempre più quella di una sfera. In questo caso il grado di omogeneità, strettamente maggiore di uno, permette di concludere la dimostrazione della convergenza ad un "punto rotondo" tramite il solo principio del massimo, evitando l'uso di stime integrali. Viene anche costruito un esempio di superficie convessa che forma una singolarità di tipo "neck pinching". Infine studiamo il caso di un grafico intero su ℝⁿ con crescita al più lineare all'infinito e mostriamo che un grafico che si evolve secondo un qualsiasi flusso nella classe considerata rimane un grafico. Inoltre dimostriamo un risultato di esistenza per tempi lunghi per i flussi con velocità S=R^{p} con p≥1/2 e descriviamo delle soluzioni esplicite per grafici a simmetria di rotazione.
##### Scheda breve Scheda completa Scheda completa (DC)
A.A. 2007/2008
Matematica
20.
We consider a smooth n-dimensional hypersurface of ℝⁿ⁺¹, with n≥2, and its evolution by a class of geometric flows. The speed of these flows has normal direction with respect to the surface and its modulus S is a symmetric function of the principal curvatures. We show some general properties of these flows and compute the evolution equation for any homogeneous function of principal curvatures. Then we apply the flow with speed S=(H/(logH)), where H is the mean curvature plus a constant, to a mean convex surface to prove some convexity estimates. Using only the maximum principle we prove that the negative part of the scalar curvature tends to zero on a limit of rescalings of the evolving surfaces near a singularity. The following part is dedicated to the study of a convex initial manifold moving by powers of scalar curvature: S=R^{p}, with p>1/2. We show that if the initial surface satisfies a pinching estimate on the principal curvatures then it shrinks to a point in finite time and the shape of the evolving surfaces approaches the one of a sphere. Since the homogeneity degree of this speed is strictly greater than one, the convergence to a "round point" can be proved using just the maximum principle, avoiding the integral estimates. Then we also construct an example of a non convex surface forming a neck pinching singularity. Finally we study the case of an entire graph over ℝⁿ with at most linear growth at infinity. We show that a graph evolving by any flow in the considered class remains a graph. Moreover we prove a long time existence result for flows where the speed is S=R^{p} with p≥1/2 and describe some explicit solutions in the rotationally symmetric case.
geometric evolution equations; fully nonlinear parabolic PDEs; convex hypersurfaces; scalar curvature; entire graphs; maximum principle; singularities formation
Settore MAT/03 - Geometria
English
Tesi di dottorato
Alessandroni, R. (2008). Evolution of hypersurfaces by curvature functions.
File in questo prodotto:
File
Thesis.pdf

accesso aperto

Dimensione 523.29 kB
Utilizza questo identificativo per citare o creare un link a questo documento: `https://hdl.handle.net/2108/661`