Reticulon 1-C (RTN1-C) is an ER-associated neuronal protein characterized by horse-shoe-like topology with two transmembrane helices and the N- and C-terminal regions which are supposed in the cytosolic side of ER. The physiological role of this protein is not completely clarified, but several studies have suggested its involvement in the neuronal differentiation, membrane vesicle trafficking and induction of apoptosis. The C-terminal region of RTN1-C is characterized by the presence of a H4 histone consensus sequence that makes it able to interact with nucleic acids and HDAC enzymes both in vitro and in vivo. In the present study a potential metal ion binding motif (HxE/D) at the C-terminal of the RTN1-C has been identified and its capability to bind metals investigated by UV-vis, CD, multidimensional NMR spectroscopy and biological assays. The results suggest a possible implication of the metal ions in the mechanisms of formation of the recently observed RTNs multiprotein complexes contributing to understand the structure and function of this neuronal membrane protein, suggesting a possible effect of the metal binding property on its biological function.
Nepravishta, R., Polizio, F., Paci, M., Melino, S.m. (2012). A metal-binding site in the RTN1-C protein: new perspectives on the physiological role of a neuronal protein. METALLOMICS, 4(5), 480-487 [10.1039/c2mt20035j].
A metal-binding site in the RTN1-C protein: new perspectives on the physiological role of a neuronal protein
POLIZIO, FRANCESCA;PACI, MAURIZIO;MELINO, SONIA MICHAELA
2012-05-01
Abstract
Reticulon 1-C (RTN1-C) is an ER-associated neuronal protein characterized by horse-shoe-like topology with two transmembrane helices and the N- and C-terminal regions which are supposed in the cytosolic side of ER. The physiological role of this protein is not completely clarified, but several studies have suggested its involvement in the neuronal differentiation, membrane vesicle trafficking and induction of apoptosis. The C-terminal region of RTN1-C is characterized by the presence of a H4 histone consensus sequence that makes it able to interact with nucleic acids and HDAC enzymes both in vitro and in vivo. In the present study a potential metal ion binding motif (HxE/D) at the C-terminal of the RTN1-C has been identified and its capability to bind metals investigated by UV-vis, CD, multidimensional NMR spectroscopy and biological assays. The results suggest a possible implication of the metal ions in the mechanisms of formation of the recently observed RTNs multiprotein complexes contributing to understand the structure and function of this neuronal membrane protein, suggesting a possible effect of the metal binding property on its biological function.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.