We describe a general construction providing index theorems localizing the Chern classes of the normal bundle of a subvariety inside a complex manifold. As particular instances of our construction we recover both Lehmann-Suwa's generalization of the classical Camacho-Sad index theorem for holomorphic foliations and our index theorem for holomorphic maps with positive dimensional fixed point set. Furthermore, we also obtain generalizations of recent index theorems of Camacho-Movasati-Sad and Camacho-Lehmann for holomorphic foliations transversal to a subvariety.

Abate, M., Bracci, F., Tovena, F. (2008). Index Theorems for holomorphic Maps and Foliations. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 57(7), 2999-3048.

Index Theorems for holomorphic Maps and Foliations

BRACCI, FILIPPO;TOVENA, FRANCESCA
2008-01-01

Abstract

We describe a general construction providing index theorems localizing the Chern classes of the normal bundle of a subvariety inside a complex manifold. As particular instances of our construction we recover both Lehmann-Suwa's generalization of the classical Camacho-Sad index theorem for holomorphic foliations and our index theorem for holomorphic maps with positive dimensional fixed point set. Furthermore, we also obtain generalizations of recent index theorems of Camacho-Movasati-Sad and Camacho-Lehmann for holomorphic foliations transversal to a subvariety.
2008
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
http://arxiv.org/abs/math/0601602
Abate, M., Bracci, F., Tovena, F. (2008). Index Theorems for holomorphic Maps and Foliations. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 57(7), 2999-3048.
Abate, M; Bracci, F; Tovena, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/60088
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact