Inspired by a result in [F. Gavarini, "Quantization of Poisson groups", Pacific Journal of Mathematics 186 (1998), 217-266], we locate three integer forms of F_q[SL(n+1)] over the ring of Laurent polynomials in q, with a presentation by generators and relations, which for q=1 specialize to U(h), where h is the Lie bialgebra of the Poisson Lie group dual SL(n+1). In sight of this, we prove also two PBW-like theorems for F_q[SL(n+1)], both related to the classical PBW theorem for U(h).
Gavarini, F. (1998). Quantum function algebras as quantum enveloping algebras. COMMUNICATIONS IN ALGEBRA, 26(6), 1795-1818 [10.1080/00927879808826240].
Quantum function algebras as quantum enveloping algebras
GAVARINI, FABIO
1998-01-01
Abstract
Inspired by a result in [F. Gavarini, "Quantization of Poisson groups", Pacific Journal of Mathematics 186 (1998), 217-266], we locate three integer forms of F_q[SL(n+1)] over the ring of Laurent polynomials in q, with a presentation by generators and relations, which for q=1 specialize to U(h), where h is the Lie bialgebra of the Poisson Lie group dual SL(n+1). In sight of this, we prove also two PBW-like theorems for F_q[SL(n+1)], both related to the classical PBW theorem for U(h).File | Dimensione | Formato | |
---|---|---|---|
qfa-quea-ref.pdf
accesso aperto
Descrizione: This is the Author's own post-print version
Licenza:
Copyright dell'editore
Dimensione
200.05 kB
Formato
Adobe PDF
|
200.05 kB | Adobe PDF | Visualizza/Apri |
qfa-quea_STA.pdf
solo utenti autorizzati
Descrizione: This is the Editor's (Taylor & Francis) printed version
Licenza:
Copyright dell'editore
Dimensione
776.37 kB
Formato
Adobe PDF
|
776.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Scopus-metadata.pdf
solo utenti autorizzati
Descrizione: This is Scopus' online page with all bibliographic metadata of the present article
Licenza:
Non specificato
Dimensione
125.11 kB
Formato
Adobe PDF
|
125.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
WoS-metadata.pdf
solo utenti autorizzati
Descrizione: This is Web of Science's online page with all bibliographic metadata of the present article
Licenza:
Non specificato
Dimensione
107.6 kB
Formato
Adobe PDF
|
107.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.