Inspired by a result in [F. Gavarini, "Quantization of Poisson groups", Pacific Journal of Mathematics 186 (1998), 217-266], we locate three integer forms of F_q[SL(n+1)] over the ring of Laurent polynomials in q, with a presentation by generators and relations, which for q=1 specialize to U(h), where h is the Lie bialgebra of the Poisson Lie group dual SL(n+1). In sight of this, we prove also two PBW-like theorems for F_q[SL(n+1)], both related to the classical PBW theorem for U(h).

Gavarini, F. (1998). Quantum function algebras as quantum enveloping algebras. COMMUNICATIONS IN ALGEBRA, 26(6), 1795-1818 [10.1080/00927879808826240].

Quantum function algebras as quantum enveloping algebras

GAVARINI, FABIO
1998-01-01

Abstract

Inspired by a result in [F. Gavarini, "Quantization of Poisson groups", Pacific Journal of Mathematics 186 (1998), 217-266], we locate three integer forms of F_q[SL(n+1)] over the ring of Laurent polynomials in q, with a presentation by generators and relations, which for q=1 specialize to U(h), where h is the Lie bialgebra of the Poisson Lie group dual SL(n+1). In sight of this, we prove also two PBW-like theorems for F_q[SL(n+1)], both related to the classical PBW theorem for U(h).
1998
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/02 - ALGEBRA
English
Con Impact Factor ISI
Quantum groups; Poisson groups; Lie bialgebras
http://dx.doi.org/10.1080/00927879808826240
Gavarini, F. (1998). Quantum function algebras as quantum enveloping algebras. COMMUNICATIONS IN ALGEBRA, 26(6), 1795-1818 [10.1080/00927879808826240].
Gavarini, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
qfa-quea-ref.pdf

accesso aperto

Descrizione: This is the Author's own post-print version
Licenza: Copyright dell'editore
Dimensione 200.05 kB
Formato Adobe PDF
200.05 kB Adobe PDF Visualizza/Apri
qfa-quea_STA.pdf

solo utenti autorizzati

Descrizione: This is the Editor's (Taylor & Francis) printed version
Licenza: Copyright dell'editore
Dimensione 776.37 kB
Formato Adobe PDF
776.37 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Scopus-metadata.pdf

solo utenti autorizzati

Descrizione: This is Scopus' online page with all bibliographic metadata of the present article
Licenza: Non specificato
Dimensione 125.11 kB
Formato Adobe PDF
125.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
WoS-metadata.pdf

solo utenti autorizzati

Descrizione: This is Web of Science's online page with all bibliographic metadata of the present article
Licenza: Non specificato
Dimensione 107.6 kB
Formato Adobe PDF
107.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/57389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact