Hepatocyte growth factor (HGF), a pleiotropic cytokine of mesenchymal origin promoting migration, proliferation, and survival in a wide spectrum of cells, can also modulate different biological responses in stem cells, but the mechanisms involved are not completely understood so far. In this context, we show that short-term exposure of mesenchymal stem cells (MSCs) to HGF can induce the activation of its cognate Met receptor and the downstream effectors ERK1/2, p38MAPK, and PI3K/Akt, while long-term exposure to HGF resulted in cytoskeletal rearrangement, cell migration, and marked inhibition of proliferation through the arrest in the G(1)-S checkpoint. When added to MSCs, the K252A tyrosine kinase inhibitor prevented HGF-induced responses. HGF's effect on MSC proliferation was reversed by p38 inhibitor SB203580, while the effects on cell migration were abrogated by PI3K inhibitor Wortmannin, suggesting that HGF acts through different pathways to determine its complex effects on MSCs. Prolonged treatment with HGF induced the expression of cardiac-specific markers (GATA-4, MEF2C, TEF1, desmin, alpha-MHC, beta-MHC, and nestin) with the concomitant loss of the stem cell markers nucleostemin, c-kit, and CD105.

Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., et al. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. STEM CELLS, 24(1), 23-33 [10.1634/stemcells.2004-0176].

Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation

MINIERI, MARILENA;CAROTENUTO, FELICIA;DE VITO, PAOLO;DI NARDO, PAOLO
2006-01-01

Abstract

Hepatocyte growth factor (HGF), a pleiotropic cytokine of mesenchymal origin promoting migration, proliferation, and survival in a wide spectrum of cells, can also modulate different biological responses in stem cells, but the mechanisms involved are not completely understood so far. In this context, we show that short-term exposure of mesenchymal stem cells (MSCs) to HGF can induce the activation of its cognate Met receptor and the downstream effectors ERK1/2, p38MAPK, and PI3K/Akt, while long-term exposure to HGF resulted in cytoskeletal rearrangement, cell migration, and marked inhibition of proliferation through the arrest in the G(1)-S checkpoint. When added to MSCs, the K252A tyrosine kinase inhibitor prevented HGF-induced responses. HGF's effect on MSC proliferation was reversed by p38 inhibitor SB203580, while the effects on cell migration were abrogated by PI3K inhibitor Wortmannin, suggesting that HGF acts through different pathways to determine its complex effects on MSCs. Prolonged treatment with HGF induced the expression of cardiac-specific markers (GATA-4, MEF2C, TEF1, desmin, alpha-MHC, beta-MHC, and nestin) with the concomitant loss of the stem cell markers nucleostemin, c-kit, and CD105.
gen-2006
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/09 - MEDICINA INTERNA
Settore BIO/12 - BIOCHIMICA CLINICA E BIOLOGIA MOLECOLARE CLINICA
English
Con Impact Factor ISI
Met receptor; mesenchymal stem cells; hepatocyte growth factor; p38; Akt
Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., et al. (2006). Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. STEM CELLS, 24(1), 23-33 [10.1634/stemcells.2004-0176].
Forte, G; Minieri, M; Cossa, P; Antenucci, D; Sala, M; Gnocchi, V; Fiaccavento, R; Carotenuto, F; DE VITO, P; Baldini, P; Prat, M; DI NARDO, P
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Forte_et_al_StemCells_2006.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/55898
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 364
  • ???jsp.display-item.citation.isi??? 322
social impact