In the dynamical theory of granular matter the so-called table problem consists in studying the evolution of a heap of matter poured continuously onto a bounded domain Omega subset of R-2. The mathematical description of the table problem, at an equilibrium configuration, can be reduced to a boundary value problem for a system of partial differential equations. The analysis of such a system, also connected with other mathematical models such as the Monge-Kantorovich problem, is the object of this paper. Our main result is an integral representation formula for the solution, in terms of the boundary curvature and of the normal distance to the cut locus of Omega.
Cannarsa, P., Cardaliaguet, P. (2004). Representation of equilibrium solutions to the table problem for growing sandpiles. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 6(4), 435-464.
Representation of equilibrium solutions to the table problem for growing sandpiles
CANNARSA, PIERMARCO;
2004-01-01
Abstract
In the dynamical theory of granular matter the so-called table problem consists in studying the evolution of a heap of matter poured continuously onto a bounded domain Omega subset of R-2. The mathematical description of the table problem, at an equilibrium configuration, can be reduced to a boundary value problem for a system of partial differential equations. The analysis of such a system, also connected with other mathematical models such as the Monge-Kantorovich problem, is the object of this paper. Our main result is an integral representation formula for the solution, in terms of the boundary curvature and of the normal distance to the cut locus of Omega.File | Dimensione | Formato | |
---|---|---|---|
2004-06-04-03.pdf
accesso aperto
Descrizione: Articolo principale
Dimensione
238.23 kB
Formato
Adobe PDF
|
238.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.