Driven by the need for high integration density of integrated circuits and high performance of single devices – especially with respect to operation frequency – the dimensions of conventional electronic and optoelectronic devices have been subject to downscaling since the early days of semiconductor technology. The enormous progress in device technology allows for the fabrication of nanometer-scale structures which are of great interest especially for optoelectronic applications. Classical and semi-classical approaches to the simulation of such structures partially or completely break down, on the one hand because the typical device dimensions get comparable to the particle mean free path and on the other hand because atomistic details of the device structure begins to play a fundamental role. Moreover, carrier confinement is a typical effect in nanostructured devices leading to new physical phenomena with vast application possibilities. Besides conventional semiconductor technology molecular-based electronics has gained much attention for nanometric eletronics. Transport in organic molecules and carbon nanotubes needs a strict quantum mechanical treatment based on methods with atomistic resolution. The consideration of quantum-mechanical effects in the simulation of nanoscale devices is essential for a reliable description of structural, electronic and optical properties and particle transport. Several approaches for such a detailed description exist and are widely used. However, they are usually computationally very intensive and therefore restricted to rather small system. Normally, what we called nanoscale device up to here represents only the active part of an electronic or optoelectronic device. It does not include surrounding parts such as contact access regions, substrates or similar. However the overall device behaviour can be influenced in a non-trivial way by these “non-active” device parts. Therefore a reliable, quantitative simulation has to take them into account. The surroundings can usually be described using semi-classical models. This situation can be handled only by a multiscale simulation, that is able to couple self-consistently the scale of semi-classical, continuous media approaches with microscale quantum-mechanical simulations. The goal of the TiberCAD project is to provide a multiscale simulation environment which meets the requirements for the simulation of emerging and future devices. It is designed to capture all the important aspects of modern devices such as strain, heat transport and electronic transport on different scales.
La richiesta di dispositivi elettronici di elevate prestazione e di circuiti ad alta integrazione ha condotto ad una continua riduzione delle loro dimensioni sin dall’avvento dell’era della tecnologia dei semiconduttori. Gli enormi progressi tecnologici consentono attualmente di produrre strutture nanometriche di grande interesse in particolare per i dispositivi optoelettronici. Approcci classici e semi-classici alla simulazione di tali strutture non sono adeguati per sistemi di questo tipo. Da un lato le dimensioni tipiche dei dispositivi diventono comparabili con il cammino libero medio dei portatori e dall’altro i dettagli della struttura atomica non sono più trascurabili. Inoltre il confinamento dei portatori, che è un tipico effetto nei dispositivi nanometrici, può essere sfruttato in diversi modi. Oltre alle tecnologie convenzionali basate su semiconduttori anche i dispositivi formati da molecole e nanotubi a carbonio suscitano un elevato interesse. La descrizione del trasporto in tali strutture richiede un trattamento quantistico che tenga conto della struttura atomica. Per ottenere una simulazione affidabile delle proprietà strutturali, elettroniche ed optoelettroniche dei dispositivi nanometrici è essenziale considerare gli effetti quantistici. Diversi approcci sono stati sviluppati a tale scopo, che però richiedono risorse computazionali eccessive per il calcolo numerico e che pertanto possono essere utilizzati solo per sistemi piccoli. In genere le strutture nanometriche sono la parte attiva di un dispositivo che comprende contatti elettrici, regioni di accesso, substrato e altro. Tuttavia il comportamento di tutto il dispositivo può essere influenzato in modo non banale da queste parti, di cui una simulazione affidabile deve quindi tener conto e che possono essere descritte con modelli semi-classici. L’approccio corretto è quindi una simulazione multiscala che sia in grado di accoppiare modelli semi-classici e modelli quantistici o atomistici in modo autoconsistente. Lo scopo del progetto TiberCAD è di fornire un ambiente di simulazione multiscala che soddisfi le esigenze di una simulazione di dispositivi elettronici avanzati. TiberCAD è progettato per includere su scale diverse gli aspetti più importanti riscontrati in dispositivi moderni come la tensione meccanica, il trasporto di particelle e di calore.
AUF DER MAUR, M. (2008). A multiscale simulation environment for electronic and optoelectronic devices [10.58015/auf-der-maur-matthias_phd2008-07-07].
A multiscale simulation environment for electronic and optoelectronic devices
AUF DER MAUR, MATTHIAS
2008-07-07
Abstract
Driven by the need for high integration density of integrated circuits and high performance of single devices – especially with respect to operation frequency – the dimensions of conventional electronic and optoelectronic devices have been subject to downscaling since the early days of semiconductor technology. The enormous progress in device technology allows for the fabrication of nanometer-scale structures which are of great interest especially for optoelectronic applications. Classical and semi-classical approaches to the simulation of such structures partially or completely break down, on the one hand because the typical device dimensions get comparable to the particle mean free path and on the other hand because atomistic details of the device structure begins to play a fundamental role. Moreover, carrier confinement is a typical effect in nanostructured devices leading to new physical phenomena with vast application possibilities. Besides conventional semiconductor technology molecular-based electronics has gained much attention for nanometric eletronics. Transport in organic molecules and carbon nanotubes needs a strict quantum mechanical treatment based on methods with atomistic resolution. The consideration of quantum-mechanical effects in the simulation of nanoscale devices is essential for a reliable description of structural, electronic and optical properties and particle transport. Several approaches for such a detailed description exist and are widely used. However, they are usually computationally very intensive and therefore restricted to rather small system. Normally, what we called nanoscale device up to here represents only the active part of an electronic or optoelectronic device. It does not include surrounding parts such as contact access regions, substrates or similar. However the overall device behaviour can be influenced in a non-trivial way by these “non-active” device parts. Therefore a reliable, quantitative simulation has to take them into account. The surroundings can usually be described using semi-classical models. This situation can be handled only by a multiscale simulation, that is able to couple self-consistently the scale of semi-classical, continuous media approaches with microscale quantum-mechanical simulations. The goal of the TiberCAD project is to provide a multiscale simulation environment which meets the requirements for the simulation of emerging and future devices. It is designed to capture all the important aspects of modern devices such as strain, heat transport and electronic transport on different scales.File | Dimensione | Formato | |
---|---|---|---|
tesi_aufdermaur.pdf
solo utenti autorizzati
Licenza:
Copyright degli autori
Dimensione
3.9 MB
Formato
Adobe PDF
|
3.9 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.