A correspondence between spectral properties of modular operators appearing in quantum field theory and the Hamiltonian is established. It allows to prove the "distal" split property for a wide class of models. Conversely, any model having this property is shown to satisfy the Haag-Swieca compactness criterion. The results lead to a new type of nuclearity condition which can be applied to quantum field theories on arbitrary space-time manifolds. © 1990 Springer-Verlag.
Buchholz D., D.C. (1990). Nuclear maps and modular structures II: Applications to quantum field theory. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 129(1), 115-138.
Tipologia: | Articolo su rivista |
Citazione: | Buchholz D., D.C. (1990). Nuclear maps and modular structures II: Applications to quantum field theory. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 129(1), 115-138. |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/BF02096782 |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 1990 |
Titolo: | Nuclear maps and modular structures II: Applications to quantum field theory |
Autori: | |
Autori: | Buchholz D., D'Antoni C., Longo R. |
Appare nelle tipologie: | 01 - Articolo su rivista |