A correspondence between spectral properties of modular operators appearing in quantum field theory and the Hamiltonian is established. It allows to prove the "distal" split property for a wide class of models. Conversely, any model having this property is shown to satisfy the Haag-Swieca compactness criterion. The results lead to a new type of nuclearity condition which can be applied to quantum field theories on arbitrary space-time manifolds. © 1990 Springer-Verlag.

Buchholz, D., D'Antoni, C., Longo, R. (1990). Nuclear maps and modular structures II: Applications to quantum field theory. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 129(1), 115-138 [10.1007/BF02096782].

Nuclear maps and modular structures II: Applications to quantum field theory

LONGO, ROBERTO
1990-01-01

Abstract

A correspondence between spectral properties of modular operators appearing in quantum field theory and the Hamiltonian is established. It allows to prove the "distal" split property for a wide class of models. Conversely, any model having this property is shown to satisfy the Haag-Swieca compactness criterion. The results lead to a new type of nuclearity condition which can be applied to quantum field theories on arbitrary space-time manifolds. © 1990 Springer-Verlag.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - Analisi Matematica
English
Buchholz, D., D'Antoni, C., Longo, R. (1990). Nuclear maps and modular structures II: Applications to quantum field theory. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 129(1), 115-138 [10.1007/BF02096782].
Buchholz, D; D'Antoni, C; Longo, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/54130
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact