The looped organization of the eukaryotic genome mediated by a skeletal framework of non-histone proteins is conserved throughout the cell cycle. The radial loop/scaffold model envisages that the higher order architecture of metaphase chromosomes relies on an axial structure around which looped DNA domains are radially arranged through stable attachment sites. In this light we investigated the relationship between the looped organization and overall morphology of chromosomes. In developing Xenopus laevis embryos at gastrulation, the bulk of the loops associated with histone-depleted nuclei exhibit a significant size increase, as visualized by fluorescence microscopy of the fully extended DNA halo surrounding high salt treated, ethidium bromide stained nuclei. This implies a reduction in the number of looped domains anchored to the supporting nucleoskeletal structure. The cytological analysis of metaphase plates from acetic acid fixed whole embryos, carried out in the absence of drugs inducing chromosome condensation, reveals a progressive thickening and shortening of metaphase chromosomes during development. We interpret these findings as a strong indication that the size and number of DNA loops influence the thickness and length of the chromosomes, respectively. The quantitative analysis of chromosome length distributions at different developmental stages suggests that the shortening is timed differently in different embryonic cells.

Micheli, G., Luzzatto, A., Carri', M.t., de Capoa, A., Pelliccia, F. (1993). Chromosome length and DNA loop size during early embryonic development of Xenopus laevis. CHROMOSOMA, 102(7), 478-483.

Chromosome length and DNA loop size during early embryonic development of Xenopus laevis

CARRI', MARIA TERESA;
1993-07-01

Abstract

The looped organization of the eukaryotic genome mediated by a skeletal framework of non-histone proteins is conserved throughout the cell cycle. The radial loop/scaffold model envisages that the higher order architecture of metaphase chromosomes relies on an axial structure around which looped DNA domains are radially arranged through stable attachment sites. In this light we investigated the relationship between the looped organization and overall morphology of chromosomes. In developing Xenopus laevis embryos at gastrulation, the bulk of the loops associated with histone-depleted nuclei exhibit a significant size increase, as visualized by fluorescence microscopy of the fully extended DNA halo surrounding high salt treated, ethidium bromide stained nuclei. This implies a reduction in the number of looped domains anchored to the supporting nucleoskeletal structure. The cytological analysis of metaphase plates from acetic acid fixed whole embryos, carried out in the absence of drugs inducing chromosome condensation, reveals a progressive thickening and shortening of metaphase chromosomes during development. We interpret these findings as a strong indication that the size and number of DNA loops influence the thickness and length of the chromosomes, respectively. The quantitative analysis of chromosome length distributions at different developmental stages suggests that the shortening is timed differently in different embryonic cells.
lug-1993
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore BIO/10 - BIOCHIMICA
English
Con Impact Factor ISI
Xenopus laevis; Animals; Chromosomes; Embryonic and Fetal Development; DNA; Metaphase; Time Factors; Nucleic Acid Conformation
Micheli, G., Luzzatto, A., Carri', M.t., de Capoa, A., Pelliccia, F. (1993). Chromosome length and DNA loop size during early embryonic development of Xenopus laevis. CHROMOSOMA, 102(7), 478-483.
Micheli, G; Luzzatto, A; Carri', Mt; de Capoa, A; Pelliccia, F
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/53344
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 34
social impact