We report on the results of a combined experimental and numerical study on the fluid motion generated by the controlled approach and arrest of a solid sphere moving towards a solid wall at moderate Reynolds number. The experiments are performed in a small tank filled with water for a range of Reynolds numbers for which the flow remains axisymmetric. The fluid agitation of the fluid related to the kinetic energy is obtained as function of time in the experiment in a volume located around the impact point. The same quantities are obtained from the numerical simulations for the same volume of integration as in the experiments and also for the entire volume of the container. As shown in previous studies, this flow is characterized by a vortex ring, initially in the wake of the sphere, that spreads radially along the wall, generating secondary vorticity of opposite sign at the sphere surface and wall. It is also observed that before the impact, the kinetic energy increases sharply for a small period of time and then decreases gradually as the fluid motion dies out. The measure of the relative agitation of the collision is found to increase weakly with the Reynolds number Re. The close agreement between the numerics and experiments is indicative of the robustness of the results. These results may be useful in light of a potential modelling of particle-laden flows. Movies illustrating the spatio-temporal dynamics are provided with the online version of this paper.

Pacheco, J., Ruiz Angulo, A., Zenit, R., Verzicco, R. (2011). Fluid velocity fluctuations in a collision of a sphere with a wall. PHYSICS OF FLUIDS, 23(6), 063301 [10.1063/1.3598313].

Fluid velocity fluctuations in a collision of a sphere with a wall

VERZICCO, ROBERTO
2011-01-01

Abstract

We report on the results of a combined experimental and numerical study on the fluid motion generated by the controlled approach and arrest of a solid sphere moving towards a solid wall at moderate Reynolds number. The experiments are performed in a small tank filled with water for a range of Reynolds numbers for which the flow remains axisymmetric. The fluid agitation of the fluid related to the kinetic energy is obtained as function of time in the experiment in a volume located around the impact point. The same quantities are obtained from the numerical simulations for the same volume of integration as in the experiments and also for the entire volume of the container. As shown in previous studies, this flow is characterized by a vortex ring, initially in the wake of the sphere, that spreads radially along the wall, generating secondary vorticity of opposite sign at the sphere surface and wall. It is also observed that before the impact, the kinetic energy increases sharply for a small period of time and then decreases gradually as the fluid motion dies out. The measure of the relative agitation of the collision is found to increase weakly with the Reynolds number Re. The close agreement between the numerics and experiments is indicative of the robustness of the results. These results may be useful in light of a potential modelling of particle-laden flows. Movies illustrating the spatio-temporal dynamics are provided with the online version of this paper.
2011
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore ING-IND/06 - FLUIDODINAMICA
English
Con Impact Factor ISI
fluid-wall interaction, fluid-particle interaction, particle-wall collision
http://pof.aip.org/resource/1/phfle6/v23/i6/p063301_s1
Pacheco, J., Ruiz Angulo, A., Zenit, R., Verzicco, R. (2011). Fluid velocity fluctuations in a collision of a sphere with a wall. PHYSICS OF FLUIDS, 23(6), 063301 [10.1063/1.3598313].
Pacheco, J; Ruiz Angulo, A; Zenit, R; Verzicco, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/52740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact