Direct numerical simulation and stereoscopic particle image velocimetry of turbulent convection are used to gather spatial data for the calculation of structure functions. We wish to add to the ongoing discussion in the literature whether temperature acts as an active or passive scalar in turbulent convection, with consequences for structure-function scaling. The simulation results show direct confirmation of the scalings derived by Bolgiano and Obukhov for turbulence with an active scalar for both velocity and temperature statistics. The active-scalar range shifts to larger scales when the forcing parameter (Rayleigh number) is increased. Furthermore, a close inspection of local turbulent length scales (Kolmogorov and Bolgiano lengths) confirms conjectures from earlier studies that the oft-used global averages are not suited for the interpretation of structure functions. In the experiment, a characterization of the domain-filling large-scale circulation of confined convection is carried out for comparison with other studies. The measured velocity fields are also used to calculate velocity structure functions, further confirming the Bolgiano-Obukhov scalings when interpreted with the local turbulent length scales found in the simulations. An extended self-similarity analysis shows that the relative scalings are different for the Kolmogorov and Bolgiano-Obukhov regimes.

Kunnen, R., Clercx, H., Geurts, B., van Bokhoven, L., Akkermans, R., Verzicco, R. (2008). Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 77(1), 016302 [10.1103/PhysRevE.77.016302].

Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection

VERZICCO, ROBERTO
2008-01-01

Abstract

Direct numerical simulation and stereoscopic particle image velocimetry of turbulent convection are used to gather spatial data for the calculation of structure functions. We wish to add to the ongoing discussion in the literature whether temperature acts as an active or passive scalar in turbulent convection, with consequences for structure-function scaling. The simulation results show direct confirmation of the scalings derived by Bolgiano and Obukhov for turbulence with an active scalar for both velocity and temperature statistics. The active-scalar range shifts to larger scales when the forcing parameter (Rayleigh number) is increased. Furthermore, a close inspection of local turbulent length scales (Kolmogorov and Bolgiano lengths) confirms conjectures from earlier studies that the oft-used global averages are not suited for the interpretation of structure functions. In the experiment, a characterization of the domain-filling large-scale circulation of confined convection is carried out for comparison with other studies. The measured velocity fields are also used to calculate velocity structure functions, further confirming the Bolgiano-Obukhov scalings when interpreted with the local turbulent length scales found in the simulations. An extended self-similarity analysis shows that the relative scalings are different for the Kolmogorov and Bolgiano-Obukhov regimes.
2008
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore ING-IND/06 - FLUIDODINAMICA
English
Con Impact Factor ISI
Rotating thermal convection, laboratory experiments, numerical simulations
http://pre.aps.org/abstract/PRE/v77/i1/e016302
Kunnen, R., Clercx, H., Geurts, B., van Bokhoven, L., Akkermans, R., Verzicco, R. (2008). Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection. PHYSICAL REVIEW E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS, 77(1), 016302 [10.1103/PhysRevE.77.016302].
Kunnen, R; Clercx, H; Geurts, B; van Bokhoven, L; Akkermans, R; Verzicco, R
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/52736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 64
social impact