The rototranslational absorption spectrum of gaseous N2 is analyzed, considering quadrupolar and hexadecapolar induction mechanisms. The available experimental data are accounted for by using a line-shape analysis in which empirical profiles describe the single-line translational profiles. We thus derive the simple procedure that allows one to predict the N2 spectrum at any temperature. On the basis of the results obtained for the pure gas, we also propose a procedure to compute the far-infrared spectrum of the N2–Ar gaseous mixture. The good agreement between computed and experimental N2–Ar data indicates that it is possible to predict the far-infrared absorption induced by N2 on the isotropic polarizability of any interacting partner.
Dore, P., Filabozzi, A. (1987). On the nitrogen-induced far-infrared absorption spectra. CANADIAN JOURNAL OF PHYSICS, 65(1), 90-93 [10.1139/p87-016].
On the nitrogen-induced far-infrared absorption spectra
FILABOZZI, ALESSANDRA
1987-01-01
Abstract
The rototranslational absorption spectrum of gaseous N2 is analyzed, considering quadrupolar and hexadecapolar induction mechanisms. The available experimental data are accounted for by using a line-shape analysis in which empirical profiles describe the single-line translational profiles. We thus derive the simple procedure that allows one to predict the N2 spectrum at any temperature. On the basis of the results obtained for the pure gas, we also propose a procedure to compute the far-infrared spectrum of the N2–Ar gaseous mixture. The good agreement between computed and experimental N2–Ar data indicates that it is possible to predict the far-infrared absorption induced by N2 on the isotropic polarizability of any interacting partner.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.