A method to measure independently the electron and hole mean drift distance (CCD) in CVD diamond is presented. Very high quality CVD diamond films were grown, and used as particle detectors. Their efficiency is measured as a function of the particle penetration depth under 5.5 MeV Am-241 alpha-particles irradiation. The data are then fitted with a theoretical formula for the carrier mean drift distances derived from a properly modified Hecht model. Simultaneous fit of spectra collected for both positive and negative detector bias gives a separate evaluation of the mean drift distances of each carrier type. The alpha-particle penetration depth is controlled either using air as an absorbing layer or varying the particle incidence angle in the 0-80degrees range. The latter setup is demonstrated to provide higher accuracy. The results show that in our sample the electron and hole CCD are comparable in the as grown state. However, in the pumped state (i.e. after the detector is pre-irradiated with beta-particles) the hole contribution is much greater than the electron one, showing that the pumping process is much more effective on hole traps than on electron traps.

Marinelli, M., Milani, E., Pucella, G., Tucciarone, A., VERONA RINATI, G., Angelone, M., et al. (2004). Separate measurement of electron and hole mean drift distance in CVD diamond. DIAMOND AND RELATED MATERIALS, 13(4-8), 929-933 [10.1016/j.diamond.2003.11.098].

Separate measurement of electron and hole mean drift distance in CVD diamond

MARINELLI, MARCO;MILANI, ENRICO;TUCCIARONE, ALDO;VERONA RINATI, GIANLUCA;
2004-01-01

Abstract

A method to measure independently the electron and hole mean drift distance (CCD) in CVD diamond is presented. Very high quality CVD diamond films were grown, and used as particle detectors. Their efficiency is measured as a function of the particle penetration depth under 5.5 MeV Am-241 alpha-particles irradiation. The data are then fitted with a theoretical formula for the carrier mean drift distances derived from a properly modified Hecht model. Simultaneous fit of spectra collected for both positive and negative detector bias gives a separate evaluation of the mean drift distances of each carrier type. The alpha-particle penetration depth is controlled either using air as an absorbing layer or varying the particle incidence angle in the 0-80degrees range. The latter setup is demonstrated to provide higher accuracy. The results show that in our sample the electron and hole CCD are comparable in the as grown state. However, in the pumped state (i.e. after the detector is pre-irradiated with beta-particles) the hole contribution is much greater than the electron one, showing that the pumping process is much more effective on hole traps than on electron traps.
2004
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore FIS/01 - FISICA SPERIMENTALE
Settore FIS/03 - FISICA DELLA MATERIA
English
Con Impact Factor ISI
diamond film; electrical properties characterization; radiation induced effects; detectors
Marinelli, M., Milani, E., Pucella, G., Tucciarone, A., VERONA RINATI, G., Angelone, M., et al. (2004). Separate measurement of electron and hole mean drift distance in CVD diamond. DIAMOND AND RELATED MATERIALS, 13(4-8), 929-933 [10.1016/j.diamond.2003.11.098].
Marinelli, M; Milani, E; Pucella, G; Tucciarone, A; VERONA RINATI, G; Angelone, M; Pillon, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/52203
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact