Let G/K be a noncompact Riemannian symmetric space and let G(C)/K-C be its complexification. Then G acts on G(C)/K-C by left translations. We study the invariant CR-structure of the closed G-orbits of maximal dimension and determine which ones can lie in the boundary of an invariant Stein domain. In this way, we obtain information on the G-invariant Stein domains in G(C)/K-C. (C) 2002 Elsevier Science (USA).

Geatti, L. (2002). Invariant domains in the complexification of a noncompact Riemannian symmetric space. JOURNAL OF ALGEBRA, 251(2), 619-685 [10.1006/jabr.2001.9150].

Invariant domains in the complexification of a noncompact Riemannian symmetric space

GEATTI, LAURA
2002-01-01

Abstract

Let G/K be a noncompact Riemannian symmetric space and let G(C)/K-C be its complexification. Then G acts on G(C)/K-C by left translations. We study the invariant CR-structure of the closed G-orbits of maximal dimension and determine which ones can lie in the boundary of an invariant Stein domain. In this way, we obtain information on the G-invariant Stein domains in G(C)/K-C. (C) 2002 Elsevier Science (USA).
2002
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/03 - GEOMETRIA
English
semisimple Lie group; symmetric space; homogeneous CR-structure
67
Geatti, L. (2002). Invariant domains in the complexification of a noncompact Riemannian symmetric space. JOURNAL OF ALGEBRA, 251(2), 619-685 [10.1006/jabr.2001.9150].
Geatti, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

Questo articolo è pubblicato sotto una Licenza Licenza Creative Commons Creative Commons

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/52185
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact