We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun–Jupiter– Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.

Locatelli, U., Giorgilli, A. (2000). Invariant tori in the secular motions of the three-body planetary systems. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 78, 47-74 [10.1023/A:1011139523256].

Invariant tori in the secular motions of the three-body planetary systems

LOCATELLI, UGO;
2000-01-01

Abstract

We consider the problem of the applicability of KAM theorem to a realistic problem of three bodies. In the framework of the averaged dynamics over the fast angles for the Sun–Jupiter– Saturn system we can prove the perpetual stability of the orbit. The proof is based on semi-numerical algorithms requiring both explicit algebraic manipulations of series and analytical estimates. The proof is made rigorous by using interval arithmetics in order to control the numerical errors.
2000
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
Locatelli, U., Giorgilli, A. (2000). Invariant tori in the secular motions of the three-body planetary systems. CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 78, 47-74 [10.1023/A:1011139523256].
Locatelli, U; Giorgilli, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/52180
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact