The ground substance of the intervertebral disc consists primarily of proteoglycans, which give the tissue its stiffness to compression and its resiliency. To investigate the structure and composition of these molecules, we extracted them from human infant nucleus pulposus under associative conditions and from human infant annulus fibrosus and cartilage end-plate under dissociative conditions. We examined the degree of aggregation, the composition, the electron microscopic appearance, and the dimensions of the proteoglycans of the intervertebral disc and compared their structure and dimensions with those of the proteoglycans from bovine hyaline cartilage. Aggregates represented 52 per cent of the proteoglycans of the nucleus pulposus between the ages of one and ten days but only 28 per cent between the ages of six and eight months. Preparations from the corresponding annuli contained 59 per cent aggregates at one to ten days and 47 per cent at six months. The corresponding cartilage end-plate preparations contained 45 and 40 per cent aggregates. The proteoglycans of the annulus fibrosus and cartilage end-plate contained more protein and less hexosamine than did those of the nucleus pulposus. Electron microscopy showed that approximately two-thirds of the aggregates from nucleus pulposus consisted of very short hyaluronate filaments with closely packed monomers. The other third had longer hyaluronate filaments and wider distances between monomers, and closely resembled the aggregates from the annulus fibrosus and cartilage end-plate. Aggregated monomers consisted of two segments: a thin segment connecting directly to the hyaluronic acid filament and a thick segment extending peripherally from the thin segment. The thin segment formed about 12 per cent of the total monomer length in the samples from all three disc tissues. The lower proportion of aggregated monomers, the lower protein content, and the smaller aggregates with closely packed monomers suggest that the nucleus pulposus may contain less link protein than do the annulus fibrosus and cartilage end-plate. Compared with proteoglycan aggregates from bovine hyaline cartilage, proteoglycan aggregates from human intervertebral disc were shorter and had fewer monomers and wider spacing between monomers. The aggregated monomers from the three components of the intervertebral disc had an average length of 209 +/- 90 nanometers, compared with 210 +/- 114 nanometers for monomers from hyaline cartilage of skeletally mature cows, 250 +/- 116 nanometers for monomers from hyaline cartilage of skeletally immature calves, and 288 +/- 108 nanometers for monomers from fetal animals.(ABSTRACT TRUNCATED AT 400 WORDS)

Buckwalter, J., Pedrini Mille, A., Pedrini, V., Tudisco, C. (1985). Proteoglycans of human infant intervertebral disc. Electron microscopic and biochemical studies. JOURNAL OF BONE AND JOINT SURGERY, 67(2), 284-294.

Proteoglycans of human infant intervertebral disc. Electron microscopic and biochemical studies

TUDISCO, COSIMO
1985-02-01

Abstract

The ground substance of the intervertebral disc consists primarily of proteoglycans, which give the tissue its stiffness to compression and its resiliency. To investigate the structure and composition of these molecules, we extracted them from human infant nucleus pulposus under associative conditions and from human infant annulus fibrosus and cartilage end-plate under dissociative conditions. We examined the degree of aggregation, the composition, the electron microscopic appearance, and the dimensions of the proteoglycans of the intervertebral disc and compared their structure and dimensions with those of the proteoglycans from bovine hyaline cartilage. Aggregates represented 52 per cent of the proteoglycans of the nucleus pulposus between the ages of one and ten days but only 28 per cent between the ages of six and eight months. Preparations from the corresponding annuli contained 59 per cent aggregates at one to ten days and 47 per cent at six months. The corresponding cartilage end-plate preparations contained 45 and 40 per cent aggregates. The proteoglycans of the annulus fibrosus and cartilage end-plate contained more protein and less hexosamine than did those of the nucleus pulposus. Electron microscopy showed that approximately two-thirds of the aggregates from nucleus pulposus consisted of very short hyaluronate filaments with closely packed monomers. The other third had longer hyaluronate filaments and wider distances between monomers, and closely resembled the aggregates from the annulus fibrosus and cartilage end-plate. Aggregated monomers consisted of two segments: a thin segment connecting directly to the hyaluronic acid filament and a thick segment extending peripherally from the thin segment. The thin segment formed about 12 per cent of the total monomer length in the samples from all three disc tissues. The lower proportion of aggregated monomers, the lower protein content, and the smaller aggregates with closely packed monomers suggest that the nucleus pulposus may contain less link protein than do the annulus fibrosus and cartilage end-plate. Compared with proteoglycan aggregates from bovine hyaline cartilage, proteoglycan aggregates from human intervertebral disc were shorter and had fewer monomers and wider spacing between monomers. The aggregated monomers from the three components of the intervertebral disc had an average length of 209 +/- 90 nanometers, compared with 210 +/- 114 nanometers for monomers from hyaline cartilage of skeletally mature cows, 250 +/- 116 nanometers for monomers from hyaline cartilage of skeletally immature calves, and 288 +/- 108 nanometers for monomers from fetal animals.(ABSTRACT TRUNCATED AT 400 WORDS)
feb-1985
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/33 - MALATTIE APPARATO LOCOMOTORE
English
Proteoglycans; Infant; Hyaluronic Acid; Humans; Cartilage; Intervertebral Disk; Hexosamines; Infant, Newborn; Microscopy, Electron; Histocytochemistry
Buckwalter, J., Pedrini Mille, A., Pedrini, V., Tudisco, C. (1985). Proteoglycans of human infant intervertebral disc. Electron microscopic and biochemical studies. JOURNAL OF BONE AND JOINT SURGERY, 67(2), 284-294.
Buckwalter, J; Pedrini Mille, A; Pedrini, V; Tudisco, C
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/51634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? ND
social impact