Control of mechanical systems is currently among one of the most active fields of research, due to the diverse applications of mechanical systems in real life. The last decades have shown an increasing interest in the control of underactuated mechanical systems. These systems are characterized by the fact of possessing more degrees of freedom than actuators, i.e., one or more degrees of freedom are unactuated. This class of mechanical systems are abundant in real life; examples of such systems include surface vessels, spacecraft, underwater vehicles, helicopters, road vehicles, mobile robots, space robots and underactuated manipulators. The thesis focuses on different generalizations of some of the existing results on the control of this class of systems, given in the existing work of A. Tornamb, R. Ortega and J. W. Grizzle, who I collaborated with during the last three years. They have been attained by using techniques borrowed from two different approaches: the passivity-based and the geometric ones. Three classes of problems are dealt with, namely: 1. Input-output decoupling for linear underactuated mechanical systems; 2. asymptotic stabilization of arbitrary equilibria in nonlinear mechanical systems with underactuation degree one 3. exponential stabilization of periodic orbits in nonlinear underactuated mechanical systems with impulse effects, with applications to biped robot locomotion

Il controllo di sistemi meccanici è attualmente uno tra i più attivi settori di ricerca, a causa delle diverse applicazioni di sistemi meccanici nella vita reale. Gli ultimi decenni hanno visto un accresciuto interesse nel controllo di sistemi meccanici sottoattuati. Questi sistemi sono caratterizzati dal possedere più gradi di libertà che attuatori, vale a dire, uno o più gradi di libertà non sono attuati. Questa classe di sistemi meccanici è molto rappresentata nella vita reale. Esempi ne sono navi, veicoli spaziali, veicoli sottomarini, elicotteri, automobili, robot mobili, robot spaziali e manipolatori sottoattuati. Questa tesi si concentra su differenti generalizzazioni di alcuni risultati esistenti sul controllo di questa classe di sistemi, presenti nel lavoro di A. Tornambè, R. Ortega e J. W. Grizzle, con i quali ho collaborato nei tre anni del dottorato. Questi risultati sono stati ottenuti usando due diversi approcci: quello basato sulla passività e quello geometrico. Tre classi di problemi vengono trattate: 1. Disaccoppiamento ingresso-uscita per sistemi meccanici lineari sottoattuati; 2. Stabilizzazione asintotica di equilibri arbitrari in sistemi meccanici non lineari sottoattuati; 3. Stabilizzazione esponenziale di orbite periodiche in sistemi meccanici non lineari sottoattuati soggetti a impatti, con applicazioni alla robotica bipede.

Viola, G. (2008). Control of underactuated mechanical systems via passivity-based and geometric techniques.

Control of underactuated mechanical systems via passivity-based and geometric techniques

VIOLA, GIUSEPPE
2008-05-28

Abstract

Il controllo di sistemi meccanici è attualmente uno tra i più attivi settori di ricerca, a causa delle diverse applicazioni di sistemi meccanici nella vita reale. Gli ultimi decenni hanno visto un accresciuto interesse nel controllo di sistemi meccanici sottoattuati. Questi sistemi sono caratterizzati dal possedere più gradi di libertà che attuatori, vale a dire, uno o più gradi di libertà non sono attuati. Questa classe di sistemi meccanici è molto rappresentata nella vita reale. Esempi ne sono navi, veicoli spaziali, veicoli sottomarini, elicotteri, automobili, robot mobili, robot spaziali e manipolatori sottoattuati. Questa tesi si concentra su differenti generalizzazioni di alcuni risultati esistenti sul controllo di questa classe di sistemi, presenti nel lavoro di A. Tornambè, R. Ortega e J. W. Grizzle, con i quali ho collaborato nei tre anni del dottorato. Questi risultati sono stati ottenuti usando due diversi approcci: quello basato sulla passività e quello geometrico. Tre classi di problemi vengono trattate: 1. Disaccoppiamento ingresso-uscita per sistemi meccanici lineari sottoattuati; 2. Stabilizzazione asintotica di equilibri arbitrari in sistemi meccanici non lineari sottoattuati; 3. Stabilizzazione esponenziale di orbite periodiche in sistemi meccanici non lineari sottoattuati soggetti a impatti, con applicazioni alla robotica bipede.
A.A. 2007/2008
Informatica e Ingegneria dell’Automazione
20.
Control of mechanical systems is currently among one of the most active fields of research, due to the diverse applications of mechanical systems in real life. The last decades have shown an increasing interest in the control of underactuated mechanical systems. These systems are characterized by the fact of possessing more degrees of freedom than actuators, i.e., one or more degrees of freedom are unactuated. This class of mechanical systems are abundant in real life; examples of such systems include surface vessels, spacecraft, underwater vehicles, helicopters, road vehicles, mobile robots, space robots and underactuated manipulators. The thesis focuses on different generalizations of some of the existing results on the control of this class of systems, given in the existing work of A. Tornamb, R. Ortega and J. W. Grizzle, who I collaborated with during the last three years. They have been attained by using techniques borrowed from two different approaches: the passivity-based and the geometric ones. Three classes of problems are dealt with, namely: 1. Input-output decoupling for linear underactuated mechanical systems; 2. asymptotic stabilization of arbitrary equilibria in nonlinear mechanical systems with underactuation degree one 3. exponential stabilization of periodic orbits in nonlinear underactuated mechanical systems with impulse effects, with applications to biped robot locomotion
nonlinear mechanical system; robotic locomotion; underactuated systems; input-output decoupling
disaccoppiamento ingressouscita; robotica bipede; sistemi sottoattuati; sistemi meccanici non lineari
Settore ING-INF/04 - Automatica
English
Tesi di dottorato
Viola, G. (2008). Control of underactuated mechanical systems via passivity-based and geometric techniques.
File in questo prodotto:
File Dimensione Formato  
tesi_dottorato_Giuseppe_Viola.pdf

accesso aperto

Descrizione: Thesis
Dimensione 2.37 MB
Formato Adobe PDF
2.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact