The paper reviews the fundamentals of indentation theory for punches with cylindrical geometry, presents a deep-indentation finite element (FE) simulation and discusses an experimental technique for flat-ended cylindrical indentation. This technique is based on the use of cylindrical punches with diameters up to 1 mm and allows pressure-penetration curves to be drawn from which yield stress and elasticity modulus can be determined. Several materials have been tested including pure metals, steels and refractory alloys; yield stress has been determined and compared with literature values. By testing at different temperatures it was also possible to determine the ductile-to-brittle transition temperature (DBTT) for some alloys that show such phenomenon. © 2004 Elsevier B.V. All rights reserved.
Riccardi, B., Montanari, R. (2004). Indentation of metals by a flat-ended cylindrical punch. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 381, 281-291 [10.1016/j.msea.2004.04.041].
Indentation of metals by a flat-ended cylindrical punch
MONTANARI, ROBERTO
2004-01-01
Abstract
The paper reviews the fundamentals of indentation theory for punches with cylindrical geometry, presents a deep-indentation finite element (FE) simulation and discusses an experimental technique for flat-ended cylindrical indentation. This technique is based on the use of cylindrical punches with diameters up to 1 mm and allows pressure-penetration curves to be drawn from which yield stress and elasticity modulus can be determined. Several materials have been tested including pure metals, steels and refractory alloys; yield stress has been determined and compared with literature values. By testing at different temperatures it was also possible to determine the ductile-to-brittle transition temperature (DBTT) for some alloys that show such phenomenon. © 2004 Elsevier B.V. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.