In the present in vitro study of rat brain, we report that transient oxygen and glucose deprivation (in vitro ischaemia) induced a post-ischaemic long-term synaptic potentiation (i-LTP) at corticostriatal synapses. We compared the physiological and pharmacological characteristics of this pathological form of synaptic plasticity with those of LTP induced by tetanic stimulation of corticostriatal fibres (t-LTP), which is thought to represent a cellular substrate of learning and memory. Activation of N-methyl-D-aspartate (NMDA) receptors was required for the induction of both forms of synaptic plasticity. The intraneuronal injection of the calcium chelator BAPTA [bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate] and inhibitors of the mitogen-activated protein kinase pathway blocked both forms of synaptic plasticity. However, while t-LTP showed input specificity, i-LTP occurred also at synaptic pathways inactive during the ischaemic period. In addition, scopolamine, a muscarinic receptor antagonist, prevented the induction of t-LTP but not of i-LTP, indicating that endogenous acetylcholine is required for physiological but not for pathological synaptic potentiation. Finally, we found that striatal cholinergic interneurones, which are resistant to in vivo ischaemia, do not express i-LTP while they express t-LTP. We suggest that i-LTP represents a pathological form of synaptic plasticity that may account for the cell type-specific vulnerability observed in striatal spiny neurones following ischaemia and energy deprivation.

Calabresi, P., Saulle, E., Centonze, D., Pisani, A., Marfia, G.a., Bernardi, G. (2002). Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability. BRAIN, 125(Pt 4), 844-860 [10.1093/brain/awf073].

Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability

CALABRESI, PAOLO;CENTONZE, DIEGO;PISANI, ANTONIO;MARFIA, GIROLAMA ALESSANDRA;BERNARDI, GIORGIO
2002-04-01

Abstract

In the present in vitro study of rat brain, we report that transient oxygen and glucose deprivation (in vitro ischaemia) induced a post-ischaemic long-term synaptic potentiation (i-LTP) at corticostriatal synapses. We compared the physiological and pharmacological characteristics of this pathological form of synaptic plasticity with those of LTP induced by tetanic stimulation of corticostriatal fibres (t-LTP), which is thought to represent a cellular substrate of learning and memory. Activation of N-methyl-D-aspartate (NMDA) receptors was required for the induction of both forms of synaptic plasticity. The intraneuronal injection of the calcium chelator BAPTA [bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate] and inhibitors of the mitogen-activated protein kinase pathway blocked both forms of synaptic plasticity. However, while t-LTP showed input specificity, i-LTP occurred also at synaptic pathways inactive during the ischaemic period. In addition, scopolamine, a muscarinic receptor antagonist, prevented the induction of t-LTP but not of i-LTP, indicating that endogenous acetylcholine is required for physiological but not for pathological synaptic potentiation. Finally, we found that striatal cholinergic interneurones, which are resistant to in vivo ischaemia, do not express i-LTP while they express t-LTP. We suggest that i-LTP represents a pathological form of synaptic plasticity that may account for the cell type-specific vulnerability observed in striatal spiny neurones following ischaemia and energy deprivation.
apr-2002
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Acetylcholine; Male; Synapses; Rats, Wistar; Cell Death; Rats; Neostriatum; Chelating Agents; Animals; Interneurons; Receptors, Glutamate; Cerebral Cortex; Action Potentials; Muscarinic Antagonists; Excitatory Postsynaptic Potentials; Excitatory Amino Acid Antagonists; MAP Kinase Signaling System; Neural Pathways; Long-Term Potentiation; Magnesium; Synaptic Transmission; Hypoxia-Ischemia, Brain
Calabresi, P., Saulle, E., Centonze, D., Pisani, A., Marfia, G.a., Bernardi, G. (2002). Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability. BRAIN, 125(Pt 4), 844-860 [10.1093/brain/awf073].
Calabresi, P; Saulle, E; Centonze, D; Pisani, A; Marfia, Ga; Bernardi, G
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/50339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 59
social impact