Conflicting data have been collected so far on the action of nitric oxide (NO) on cholinergic interneurons of the striatum. In the present in vitro electrophysiological study, we reported that intracellularly recorded striatal cholinergic interneurons are excited by both hydroxylamine and S-nitroso-N-acetylpenicillamine, two NO donors. This excitation persisted unchanged in the presence of glutamate, dopamine, and substance P receptor antagonists as well as after blockade of tetrodotoxin (TTX)- and calcium channel-sensitive transmitter release, suggesting that NO produces its effects by modulating directly resting ion conductances in the somatodendritic region of striatal cholinergic cells. The depolarizing effect of hydroxylamine was greatly reduced by lowering external concentrations of sodium ions (from 126 to 38 mm) and did not reverse polarity in the voltage range from -120 to -40 mV. The sodium transporter blockers bepridil and 3',4'-dichlorobenzamil were conversely ineffective in preventing NO-induced membrane depolarization. Intracellular cGMP elevation is required for the action of hydroxylamine on striatal cholinergic cells, as demonstrated by the findings that the membrane depolarization produced by this pharmacological agent was prevented by bath and intracellular application of two inhibitors of soluble guanylyl cyclase and was mimicked and occluded by zaprinast, a cGMP phosphodiesterase inhibitor. Finally, intracellular Rp-8-Br-cGMPS, a protein kinase G (PKG) inhibitor, blocked the hydroxylamine-induced membrane depolarization of cholinergic interneurons, whereas both okadaic acid and calyculin A, two protein phosphatase inhibitors, enhanced it, indicating that intracellular PKG and phosphatases oppositely regulate the sensitivity of striatal cholinergic interneurons to NO. The characterization of the cellular mechanisms involved in the regulation of striatal interneuron activity is a key step for the understanding of the role of these cells in striatal microcircuitry.

Centonze, D., Pisani, A., Bonsi, P., Giacomini, P., Bernardi, G., Calabresi, P. (2001). Stimulation of nitric oxide-cGMP pathway excites striatal cholinergic interneurons via protein kinase G activation. THE JOURNAL OF NEUROSCIENCE, 21(4), 1393-1400.

Stimulation of nitric oxide-cGMP pathway excites striatal cholinergic interneurons via protein kinase G activation

CENTONZE, DIEGO;PISANI, ANTONIO;BERNARDI, GIORGIO;CALABRESI, PAOLO
2001-02-15

Abstract

Conflicting data have been collected so far on the action of nitric oxide (NO) on cholinergic interneurons of the striatum. In the present in vitro electrophysiological study, we reported that intracellularly recorded striatal cholinergic interneurons are excited by both hydroxylamine and S-nitroso-N-acetylpenicillamine, two NO donors. This excitation persisted unchanged in the presence of glutamate, dopamine, and substance P receptor antagonists as well as after blockade of tetrodotoxin (TTX)- and calcium channel-sensitive transmitter release, suggesting that NO produces its effects by modulating directly resting ion conductances in the somatodendritic region of striatal cholinergic cells. The depolarizing effect of hydroxylamine was greatly reduced by lowering external concentrations of sodium ions (from 126 to 38 mm) and did not reverse polarity in the voltage range from -120 to -40 mV. The sodium transporter blockers bepridil and 3',4'-dichlorobenzamil were conversely ineffective in preventing NO-induced membrane depolarization. Intracellular cGMP elevation is required for the action of hydroxylamine on striatal cholinergic cells, as demonstrated by the findings that the membrane depolarization produced by this pharmacological agent was prevented by bath and intracellular application of two inhibitors of soluble guanylyl cyclase and was mimicked and occluded by zaprinast, a cGMP phosphodiesterase inhibitor. Finally, intracellular Rp-8-Br-cGMPS, a protein kinase G (PKG) inhibitor, blocked the hydroxylamine-induced membrane depolarization of cholinergic interneurons, whereas both okadaic acid and calyculin A, two protein phosphatase inhibitors, enhanced it, indicating that intracellular PKG and phosphatases oppositely regulate the sensitivity of striatal cholinergic interneurons to NO. The characterization of the cellular mechanisms involved in the regulation of striatal interneuron activity is a key step for the understanding of the role of these cells in striatal microcircuitry.
15-feb-2001
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MED/26 - NEUROLOGIA
English
Con Impact Factor ISI
Acetylcholine; Corpus Striatum; Male; 3',5'-Cyclic-GMP Phosphodiesterases; Cyclic GMP; Rats, Wistar; Thionucleotides; Rats; Animals; Interneurons; Sodium; Patch-Clamp Techniques; Electric Stimulation; Phosphoprotein Phosphatases; Neurotransmitter Agents; Nitric Oxide Donors; Cyclic GMP-Dependent Protein Kinases; Enzyme Inhibitors; Membrane Potentials; Tetrodotoxin; Nitric Oxide Synthase; Nitric Oxide; Excitatory Amino Acid Antagonists
Centonze, D., Pisani, A., Bonsi, P., Giacomini, P., Bernardi, G., Calabresi, P. (2001). Stimulation of nitric oxide-cGMP pathway excites striatal cholinergic interneurons via protein kinase G activation. THE JOURNAL OF NEUROSCIENCE, 21(4), 1393-1400.
Centonze, D; Pisani, A; Bonsi, P; Giacomini, P; Bernardi, G; Calabresi, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/50314
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact