A number of proteins post- translationally modified by the covalent attachment of mevalonate-derived isoprene groups farnesol (FOH) or geranylgeraniol (GGOH), play a role in cell proliferation. For this reason, protein farnesyltransferase (PFTase) and protein geranylgeranyltransferases (PGGTases) I and II have gained attention as novel targets for the development of antiproliferative agents. Monoterpenes [limonene, perillic acid (PA) and its derivatives] have been shown to inhibit cell growth and protein prenylation in cancer cells. In the present study, we evaluated the effect of S(-) PA on diploid rat aorta smooth muscle cell (SMC) proliferation as related to protein prenylation. S(-) PA (1-3.5 mM) decreased, in a concentration-dependent manner, rat SMC proliferation as evaluated by cell counting and DNA synthesis. Morphological criteria and flow cytometry analysis excluded the induction of apoptosis as a potential antiproliferative mechanism of S(-) PA on SMC and confirmed a block of the cell cycle progression in G(0)/G(1) phase. The antiproliferative effect of S(-) PA could not be prevented by the addition of mevalonate, FOH, and GGOH to the culture medium and was independent of cholesterol biosynthesis. Densitometric analysis of fluorographed gels, after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell lysates, further supported that S(-) PA (1-3.5 mM), under the same experimental conditions, concentration-dependently inhibited FOH (up to 70%) and GGOH (up to 70%) incorporation into cellular proteins. We provide evidence that S(-) PA affects protein prenylation, an effect that may contribute to its inhibition of SMC proliferation. (C) 2001 Elsevier Science Inc. All rights reserved.
Ferri, N., Arnaboldi, L., Orlandi, A., Yokoyama, K., Gree, R., Granata, A., et al. (2001). Effect of S(-) perillic acid on protein prenylation and arterial smooth muscle cell proliferation. BIOCHEMICAL PHARMACOLOGY, 62(12), 1637-1645 [10.1016/S0006-2952(01)00808-5].
Effect of S(-) perillic acid on protein prenylation and arterial smooth muscle cell proliferation
ORLANDI, AUGUSTO;
2001-01-01
Abstract
A number of proteins post- translationally modified by the covalent attachment of mevalonate-derived isoprene groups farnesol (FOH) or geranylgeraniol (GGOH), play a role in cell proliferation. For this reason, protein farnesyltransferase (PFTase) and protein geranylgeranyltransferases (PGGTases) I and II have gained attention as novel targets for the development of antiproliferative agents. Monoterpenes [limonene, perillic acid (PA) and its derivatives] have been shown to inhibit cell growth and protein prenylation in cancer cells. In the present study, we evaluated the effect of S(-) PA on diploid rat aorta smooth muscle cell (SMC) proliferation as related to protein prenylation. S(-) PA (1-3.5 mM) decreased, in a concentration-dependent manner, rat SMC proliferation as evaluated by cell counting and DNA synthesis. Morphological criteria and flow cytometry analysis excluded the induction of apoptosis as a potential antiproliferative mechanism of S(-) PA on SMC and confirmed a block of the cell cycle progression in G(0)/G(1) phase. The antiproliferative effect of S(-) PA could not be prevented by the addition of mevalonate, FOH, and GGOH to the culture medium and was independent of cholesterol biosynthesis. Densitometric analysis of fluorographed gels, after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the cell lysates, further supported that S(-) PA (1-3.5 mM), under the same experimental conditions, concentration-dependently inhibited FOH (up to 70%) and GGOH (up to 70%) incorporation into cellular proteins. We provide evidence that S(-) PA affects protein prenylation, an effect that may contribute to its inhibition of SMC proliferation. (C) 2001 Elsevier Science Inc. All rights reserved.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.