Let N be a statistical manifold of density operators, with respect to an n.s.f. trace tau on a semifinite von Neumann algebra M. If S-p is the unit sphere of the noncommutative space L-p(M, tau), using the noncommutative Amari embedding rho is an element of N --> rho(1/p) is an element of S-p, we define a noncommutative alpha-bundle-connection pair (F-alpha,del(alpha)), by the pullback technique. In the commutative case we show that it coincides with the construction of nonparametric Amari-Centsov alpha-connection made in Ref. 8 by Gibilisco and Pistone.

Gibilisco, P., Isola, T. (1999). Connections on statistical manifolds of density operators by geometry of noncommutative L-p-spaces. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2(1), 169-178.

Connections on statistical manifolds of density operators by geometry of noncommutative L-p-spaces

GIBILISCO, PAOLO;ISOLA, TOMMASO
1999-01-01

Abstract

Let N be a statistical manifold of density operators, with respect to an n.s.f. trace tau on a semifinite von Neumann algebra M. If S-p is the unit sphere of the noncommutative space L-p(M, tau), using the noncommutative Amari embedding rho is an element of N --> rho(1/p) is an element of S-p, we define a noncommutative alpha-bundle-connection pair (F-alpha,del(alpha)), by the pullback technique. In the commutative case we show that it coincides with the construction of nonparametric Amari-Centsov alpha-connection made in Ref. 8 by Gibilisco and Pistone.
1999
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/06 - PROBABILITA' E STATISTICA MATEMATICA
English
Con Impact Factor ISI
VONNEUMANN
Gibilisco, P., Isola, T. (1999). Connections on statistical manifolds of density operators by geometry of noncommutative L-p-spaces. INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2(1), 169-178.
Gibilisco, P; Isola, T
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
IDAQP1999.pdf

accesso aperto

Dimensione 5.69 MB
Formato Adobe PDF
5.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/49736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact