This study was set to investigate the mechanisms through which bacterial lipopolysaccharide (LPS) stimulates prostaglandin (PG) production in rat astrocytes. Primary cultures of rat hypothalamic astrocytes were established. Cells were treated with LPS alone or LPS plus antagonists of various pathways, and the subsequent changes in cyclo-oxygenase (COX) activity were monitored by measuring a COX end product, PGE2, released into the incubation medium. It was found that (i) LPS produced a concentration-dependent increase in PGE2 release from astrocytes. The potency of LPS was significantly increased by the addition of serum into the incubation medium; (ii) after 24 h of incubation, inducible COX (COX-2) accounts for most of the LPS-stimulated PG production, as the latter was markedly reduced by dexamethasone and the specific COX-2 inhibitor NS 398; and (iii) nuclear factor κB appears to play a role in the activation of COX-2 induced by LPS, since certain inhibitors of this transcription factor were able to antagonize, at least in part, the effects of LPS on PGE2 release.
Pistritto, G., Franzese, O., Pozzoli, G., Mancuso, C., Tringali, G., Preziosi, P., et al. (1999). Bacterial lipopolysaccharide increases prostaglandin production by rat astrocytes via inducible cyclo-oxygenase: Evidence for the involvement of nuclear factor kappa B. BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 263(2), 570-574 [10.1006/bbrc.1999.1413].
Bacterial lipopolysaccharide increases prostaglandin production by rat astrocytes via inducible cyclo-oxygenase: Evidence for the involvement of nuclear factor kappa B
PISTRITTO, GIUSEPPA;FRANZESE, ORNELLA;
1999-01-01
Abstract
This study was set to investigate the mechanisms through which bacterial lipopolysaccharide (LPS) stimulates prostaglandin (PG) production in rat astrocytes. Primary cultures of rat hypothalamic astrocytes were established. Cells were treated with LPS alone or LPS plus antagonists of various pathways, and the subsequent changes in cyclo-oxygenase (COX) activity were monitored by measuring a COX end product, PGE2, released into the incubation medium. It was found that (i) LPS produced a concentration-dependent increase in PGE2 release from astrocytes. The potency of LPS was significantly increased by the addition of serum into the incubation medium; (ii) after 24 h of incubation, inducible COX (COX-2) accounts for most of the LPS-stimulated PG production, as the latter was markedly reduced by dexamethasone and the specific COX-2 inhibitor NS 398; and (iii) nuclear factor κB appears to play a role in the activation of COX-2 induced by LPS, since certain inhibitors of this transcription factor were able to antagonize, at least in part, the effects of LPS on PGE2 release.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.