We consider the one-dimensional, nonlocal, evolution equation derived by De Masi et al. (1995) for Ising systems with Glauber dynamics, Kac potentials and magnetic field. We prove the existence of travelling fronts, their uniqueness module translations among the monotone profiles and their linear stability for all the admissible values of the magnetic field for which the underlying spin system exhibits a stable and metastable phase.

Orlandi, E., Triolo, L. (1997). Travelling fronts in nonlocal models for phase separation in an external field. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 127(4), 823-835 [10.1017/S0308210500023854].

Travelling fronts in nonlocal models for phase separation in an external field

TRIOLO, LIVIO
1997-01-01

Abstract

We consider the one-dimensional, nonlocal, evolution equation derived by De Masi et al. (1995) for Ising systems with Glauber dynamics, Kac potentials and magnetic field. We prove the existence of travelling fronts, their uniqueness module translations among the monotone profiles and their linear stability for all the admissible values of the magnetic field for which the underlying spin system exhibits a stable and metastable phase.
1997
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
NONLOCAL EQUATIONS; PHASE INTERFACE
Orlandi, E., Triolo, L. (1997). Travelling fronts in nonlocal models for phase separation in an external field. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 127(4), 823-835 [10.1017/S0308210500023854].
Orlandi, E; Triolo, L
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/48234
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact