The solution of ordinary and partial differential equations using implicit linear multistep formulas (LMF) is considered. More precisely, boundary value methods (BVMs), a class of methods based on implicit formulas is taken into account in this paper. These methods require the solution of large and sparse linear systems Mˆx=b. Block-circulant preconditioners are proposed to solve these linear systems. By investigating the spectral condition number of Mˆ, we show that the conjugate gradient method, when applied to solving the normalized preconditioned system, converges in at most O(logs) steps, where the integration step size is O(1/s). Numerical results are given to illustrate the effectiveness of the analysis

Bertaccini, D., Ng, M. (2001). The Convergence Rate of Block Preconditioned Systems Arising From LMF-Based ODE Codes. BIT, 41(3), 433-450 [10.1023/A:1021906926616].

The Convergence Rate of Block Preconditioned Systems Arising From LMF-Based ODE Codes

BERTACCINI, DANIELE;
2001-01-01

Abstract

The solution of ordinary and partial differential equations using implicit linear multistep formulas (LMF) is considered. More precisely, boundary value methods (BVMs), a class of methods based on implicit formulas is taken into account in this paper. These methods require the solution of large and sparse linear systems Mˆx=b. Block-circulant preconditioners are proposed to solve these linear systems. By investigating the spectral condition number of Mˆ, we show that the conjugate gradient method, when applied to solving the normalized preconditioned system, converges in at most O(logs) steps, where the integration step size is O(1/s). Numerical results are given to illustrate the effectiveness of the analysis
2001
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/08 - ANALISI NUMERICA
English
Con Impact Factor ISI
Bertaccini, D., Ng, M. (2001). The Convergence Rate of Block Preconditioned Systems Arising From LMF-Based ODE Codes. BIT, 41(3), 433-450 [10.1023/A:1021906926616].
Bertaccini, D; Ng, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
reliable-nlaa.pdf

accesso aperto

Dimensione 139.5 kB
Formato Adobe PDF
139.5 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/48213
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact