We consider the hamiltonian $H={1\over2}(I_1^2+I_2^2)+\varepsilon(\cos\varphi_1-1) (1+\mu(\sin\varphi_2+\cos t))$ $I\in{\Bbb R}^2$ (\lq\lq Arnol'd model about diffusion"); by means of fixed point theorems, the existence of the stable and unstable manifolds {\it (whiskers)} of invariant, \lq\lq a priori unstable tori", for any vector-frequency $(\omega,1)\in{\Bbb R}^2$ is proven. Our aim is to provide detailed proofs which are missing in Arnol'd's paper, namely prove the content of the {\tt Assertion B} pag.583 of [A]. Our proofs are based on technical tools suggested by Arnol'd i.e. the contraction mapping method togheter with the \lq\lq conical metric" ( see the footnote ** of pag. 583 of [A]).

Perfetti, P. (1998). Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 4(2), 379-391.

Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space

PERFETTI, PAOLO
1998-04-01

Abstract

We consider the hamiltonian $H={1\over2}(I_1^2+I_2^2)+\varepsilon(\cos\varphi_1-1) (1+\mu(\sin\varphi_2+\cos t))$ $I\in{\Bbb R}^2$ (\lq\lq Arnol'd model about diffusion"); by means of fixed point theorems, the existence of the stable and unstable manifolds {\it (whiskers)} of invariant, \lq\lq a priori unstable tori", for any vector-frequency $(\omega,1)\in{\Bbb R}^2$ is proven. Our aim is to provide detailed proofs which are missing in Arnol'd's paper, namely prove the content of the {\tt Assertion B} pag.583 of [A]. Our proofs are based on technical tools suggested by Arnol'd i.e. the contraction mapping method togheter with the \lq\lq conical metric" ( see the footnote ** of pag. 583 of [A]).
apr-1998
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Arnol'd-diffusion, Kam-Theorem, instabilities,
http://aimsciences.org/journals/contentsList.jsp?pubID=106
http://www.mat.uniroma2.it/~perfetti/lavori/lavori.html
Perfetti, P. (1998). Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 4(2), 379-391.
Perfetti, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/45637
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact