We study the existence of periodic solutions for the infinite-dimensional second order system $\ddot x=V_{x},\ x\in{\Bbb T}^{{\Bbb Z}_+}.$ Using the Implicit-Function-Theorem, we prove the existence of time-periodic solutions at \lq\lq high frequencies"; no \lq\lq smallness condition" on $V(x)$ is required.

Perfetti, P. (1997). An infinite-dimensional extension of a Poincar\'e's result concerning the continuation of periodic orbits. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 3(3), 401-418.

An infinite-dimensional extension of a Poincar\'e's result concerning the continuation of periodic orbits

PERFETTI, PAOLO
1997-07-01

Abstract

We study the existence of periodic solutions for the infinite-dimensional second order system $\ddot x=V_{x},\ x\in{\Bbb T}^{{\Bbb Z}_+}.$ Using the Implicit-Function-Theorem, we prove the existence of time-periodic solutions at \lq\lq high frequencies"; no \lq\lq smallness condition" on $V(x)$ is required.
lug-1997
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Infinite-dimensional-systems, Poincare's-periodic-orbits,
http://aimsciences.org/journals/contentsList.jsp?pubID=97
http://www.mat.uniroma2.it/~perfetti/lavori/lavori.html
Perfetti, P. (1997). An infinite-dimensional extension of a Poincar\'e's result concerning the continuation of periodic orbits. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 3(3), 401-418.
Perfetti, P
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/45636
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact