As a generalization of DHR analysis, the superselection sectors are studied in the absence of the spectrum condition for the reference representation. Considering a net of local observables in 4-dimensional Minkowski spacetime, we associate to a set of representations, that are local excitations of a reference representation fulfilling Haag duality, a symmetric tensor C*-category B(Θ) of bimodules of the net, with subobjects and direct sums. The existence of conjugates is studied introducing an equivalent formulation of the theory in terms of the presheaf associated with the observable net. This allows us to find, under the assumption that the local algebras in the reference representation are properly infinite, necessary and sufficient conditions for the existence of conjugates. Moreover, we present several results that suggest how the mentioned assumption on the reference representation can be considered essential also in the case of theories in curved spacetimes.
Ruzzi, G. (2003). Essential properties of the vacuum sector for a theory of superselection sectors. REVIEWS IN MATHEMATICAL PHYSICS, 15(10), 1255-1283.
Tipologia: | Articolo su rivista |
Citazione: | Ruzzi, G. (2003). Essential properties of the vacuum sector for a theory of superselection sectors. REVIEWS IN MATHEMATICAL PHYSICS, 15(10), 1255-1283. |
IF: | Con Impact Factor ISI |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica Settore MAT/07 - Fisica Matematica |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1142/S0129055X03001874 |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 2003 |
Titolo: | Essential properties of the vacuum sector for a theory of superselection sectors |
Autori: | |
Autori: | Ruzzi, G |
Appare nelle tipologie: | 01 - Articolo su rivista |