In this paper we state some existence results for the semilinear elliptic equation -Deltau(x) - lambdau(x) = W(x)f(u) where W(x) is a function possibly changing sign, f has a superlinear growth and lambda is a positive real parameter. We discuss both the cases of subcritical and critical growth for f, and prove the existence of Linking type solutions.

Grossi, M., Magrone, P., Matzeu, M. (2001). Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 7(4), 703-718.

Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth

MATZEU, MICHELE
2001-01-01

Abstract

In this paper we state some existence results for the semilinear elliptic equation -Deltau(x) - lambdau(x) = W(x)f(u) where W(x) is a function possibly changing sign, f has a superlinear growth and lambda is a positive real parameter. We discuss both the cases of subcritical and critical growth for f, and prove the existence of Linking type solutions.
2001
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/05 - ANALISI MATEMATICA
English
Con Impact Factor ISI
Critical exponent; Linking type critical points; Potential changing sign
Grossi, M., Magrone, P., Matzeu, M. (2001). Linking type solutions for elliptic equations with indefinite nonlinearities up to the critical growth. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 7(4), 703-718.
Grossi, M; Magrone, P; Matzeu, M
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/44221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact