In this paper, we consider a discrete-time stochastic SIR model, where the transmission rate and the number of infectious individuals are random and unobservable. This model accounts for random fluctuations in infectiousness and for non-detected infections. Thus, statistical inference has to be performed in a partial information setting. We adopt a Bayesian approach and use nested particle filtering to estimate the state of the system and the parameters. Moreover, we discuss forecasts and model tests based on the posterior predictive distribution. As a case study, we apply our methodology to Austrian Covid-19 infection data.

Colaneri, K., Damian, C., Frey, R. (2024). A filtering approach for statistical inference in a stochastic SIR model with an application to Covid-19 data. BIOSTATISTICS, 26(1) [10.1093/biostatistics/kxaf036].

A filtering approach for statistical inference in a stochastic SIR model with an application to Covid-19 data

Colaneri, Katia
;
2024-12-31

Abstract

In this paper, we consider a discrete-time stochastic SIR model, where the transmission rate and the number of infectious individuals are random and unobservable. This model accounts for random fluctuations in infectiousness and for non-detected infections. Thus, statistical inference has to be performed in a partial information setting. We adopt a Bayesian approach and use nested particle filtering to estimate the state of the system and the parameters. Moreover, we discuss forecasts and model tests based on the posterior predictive distribution. As a case study, we apply our methodology to Austrian Covid-19 infection data.
31-dic-2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore STAT-04/A - Metodi matematici dell'economia e delle scienze attuariali e finanziarie
Settore MATH-03/B - Probabilità e statistica matematica
English
epidemiological data
hidden Markov model
nested particle filtering
parameter inference
stochastic SIR model
Colaneri, K., Damian, C., Frey, R. (2024). A filtering approach for statistical inference in a stochastic SIR model with an application to Covid-19 data. BIOSTATISTICS, 26(1) [10.1093/biostatistics/kxaf036].
Colaneri, K; Damian, C; Frey, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
kxaf036.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 3.83 MB
Formato Adobe PDF
3.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/440707
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact