Let D be a bounded homogeneous domain in ℂn. In this note, we give a characterization of the Stein domains in D which are invariant under a maximal unipotent subgroup N of Aut(D). We also exhibit an Ninvariant potential of the Bergman metric of D, expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.

Geatti, L., Iannuzzi, A. (2024). A REMARK ON THE N-INVARIANT GEOMETRY OF BOUNDED HOMOGENEOUS DOMAINS. NAGOYA MATHEMATICAL JOURNAL, 256, 928-937 [10.1017/nmj.2024.12].

A REMARK ON THE N-INVARIANT GEOMETRY OF BOUNDED HOMOGENEOUS DOMAINS

LAURA GEATTI
;
ANDREA IANNUZZI
2024-01-01

Abstract

Let D be a bounded homogeneous domain in ℂn. In this note, we give a characterization of the Stein domains in D which are invariant under a maximal unipotent subgroup N of Aut(D). We also exhibit an Ninvariant potential of the Bergman metric of D, expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
bounded homogeneous domains
Stein subdomains
unipotent group
Geatti, L., Iannuzzi, A. (2024). A REMARK ON THE N-INVARIANT GEOMETRY OF BOUNDED HOMOGENEOUS DOMAINS. NAGOYA MATHEMATICAL JOURNAL, 256, 928-937 [10.1017/nmj.2024.12].
Geatti, L; Iannuzzi, A
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/440663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact