We develop efficient and effective strategies for the update of Katz centralities after node and edge removal in simple graphs. We provide explicit formulas for the “loss of walks” a network suffers when nodes/edges are removed and use these to inform our algorithms. The theory builds on the newly introduced concept of F-avoiding first-passage walks. Further, bounds on the change of total network communicability are also derived. Extensive numerical experiments on synthetic and real-world networks complement our theoretical results.

Arrigo, F., Bertaccini, D., Filippo, A. (2025). Updating Katz Centrality by Counting Walks. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 46(4), 2449-2474 [10.1137/24M1713995].

Updating Katz Centrality by Counting Walks

Daniele Bertaccini
Membro del Collaboration Group
;
Alessandro Filippo
Membro del Collaboration Group
2025-01-01

Abstract

We develop efficient and effective strategies for the update of Katz centralities after node and edge removal in simple graphs. We provide explicit formulas for the “loss of walks” a network suffers when nodes/edges are removed and use these to inform our algorithms. The theory builds on the newly introduced concept of F-avoiding first-passage walks. Further, bounds on the change of total network communicability are also derived. Extensive numerical experiments on synthetic and real-world networks complement our theoretical results.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-05/A - Analisi numerica
English
Con Impact Factor ISI
Arrigo, F., Bertaccini, D., Filippo, A. (2025). Updating Katz Centrality by Counting Walks. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 46(4), 2449-2474 [10.1137/24M1713995].
Arrigo, F; Bertaccini, D; Filippo, A
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Arrigo-DB-Filippo-SIMAX2025.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/439184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact