In this paper, we consider the following two-component elliptic system with critical growth (Formula presented.) where Vj(x)∈L2(R4) are nonnegative potentials and the nonlinear coefficients β,μj, j=1,2, are positive. Here we also assume λ>0. By variational methods combined with degree theory, we prove some results about the existence and multiplicity of positive solutions under the hypothesis β>max{μ1,μ2}. These results generalize the results for semilinear Schrödinger equation on half space by Cerami and Passaseo (SIAM J Math Anal 28:867–885, 1997) to the above elliptic system, while extending the existence result from Liu and Liu (Calc Var Partial Differ Equ 59:145, 2020).

Guo, L., Li, Q., Luo, X., Molle, R. (2025). Standing waves for two-component elliptic system with critical growth in R4: the attractive case. MATHEMATISCHE ZEITSCHRIFT, 309(2) [10.1007/s00209-024-03660-z].

Standing waves for two-component elliptic system with critical growth in R4: the attractive case

Molle R.
2025-01-01

Abstract

In this paper, we consider the following two-component elliptic system with critical growth (Formula presented.) where Vj(x)∈L2(R4) are nonnegative potentials and the nonlinear coefficients β,μj, j=1,2, are positive. Here we also assume λ>0. By variational methods combined with degree theory, we prove some results about the existence and multiplicity of positive solutions under the hypothesis β>max{μ1,μ2}. These results generalize the results for semilinear Schrödinger equation on half space by Cerami and Passaseo (SIAM J Math Anal 28:867–885, 1997) to the above elliptic system, while extending the existence result from Liu and Liu (Calc Var Partial Differ Equ 59:145, 2020).
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Critical growth
Elliptic system
Lack of compactness
Positive solution
Guo, L., Li, Q., Luo, X., Molle, R. (2025). Standing waves for two-component elliptic system with critical growth in R4: the attractive case. MATHEMATISCHE ZEITSCHRIFT, 309(2) [10.1007/s00209-024-03660-z].
Guo, L; Li, Q; Luo, X; Molle, R
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Guo-Li-Luo-Molle_2025_Math_Z.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 619.93 kB
Formato Adobe PDF
619.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/439085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact