We prove that every bounded smooth domain of finite D'Angelo type in C-2 endowed with the Kobayashi distance is Gromov hyperbolic and its Gromov boundary is canonically homeomorphic to the Euclidean boundary. We also show that any domain in C-2 endowed with the Kobayashi distance is Gromov hyperbolic provided there exists a sequence of automorphisms that converges to a smooth boundary point of finite D'Angelo type.
Fiacchi, M. (2022). Gromov hyperbolicity of pseudoconvex finite type domains in C2. MATHEMATISCHE ANNALEN, 382(1-2), 37-68 [10.1007/s00208-020-02135-w].
Gromov hyperbolicity of pseudoconvex finite type domains in C2
Fiacchi M.
2022-01-01
Abstract
We prove that every bounded smooth domain of finite D'Angelo type in C-2 endowed with the Kobayashi distance is Gromov hyperbolic and its Gromov boundary is canonically homeomorphic to the Euclidean boundary. We also show that any domain in C-2 endowed with the Kobayashi distance is Gromov hyperbolic provided there exists a sequence of automorphisms that converges to a smooth boundary point of finite D'Angelo type.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
s00208-020-02135-w.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
418.99 kB
Formato
Adobe PDF
|
418.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


