We prove that every bounded smooth domain of finite D'Angelo type in C-2 endowed with the Kobayashi distance is Gromov hyperbolic and its Gromov boundary is canonically homeomorphic to the Euclidean boundary. We also show that any domain in C-2 endowed with the Kobayashi distance is Gromov hyperbolic provided there exists a sequence of automorphisms that converges to a smooth boundary point of finite D'Angelo type.

Fiacchi, M. (2022). Gromov hyperbolicity of pseudoconvex finite type domains in C2. MATHEMATISCHE ANNALEN, 382(1-2), 37-68 [10.1007/s00208-020-02135-w].

Gromov hyperbolicity of pseudoconvex finite type domains in C2

Fiacchi M.
2022-01-01

Abstract

We prove that every bounded smooth domain of finite D'Angelo type in C-2 endowed with the Kobayashi distance is Gromov hyperbolic and its Gromov boundary is canonically homeomorphic to the Euclidean boundary. We also show that any domain in C-2 endowed with the Kobayashi distance is Gromov hyperbolic provided there exists a sequence of automorphisms that converges to a smooth boundary point of finite D'Angelo type.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-02/B - Geometria
English
Con Impact Factor ISI
Fiacchi, M. (2022). Gromov hyperbolicity of pseudoconvex finite type domains in C2. MATHEMATISCHE ANNALEN, 382(1-2), 37-68 [10.1007/s00208-020-02135-w].
Fiacchi, M
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
s00208-020-02135-w.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 418.99 kB
Formato Adobe PDF
418.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/438564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact