In this work, we extend Aubry-Mather theory to the case of control systems with nonholonomic constraints. In this framework, we consider an optimal control problem where admissible trajectories are solutions of a control-affine equation. Such an equation is associated with a family of smooth vector fields that satisfy the Hörmander condition, which implies the controllability of the system. In this case, the Hamiltonian fails to be coercive, so results for Tonelli Hamiltonians cannot be applied. To overcome these obstacles, we develop an intrinsic approach based on the metric properties of the geometry induced on the state space by the sub-Riemannian structure.

Cannarsa, P., Mendico, C. (2025). Aurby-Mather theory for optimal control systems with nonholonomic constraints. MATHEMATISCHE ANNALEN, 392(4), 5065-5106 [10.1007/s00208-025-03220-8].

Aurby-Mather theory for optimal control systems with nonholonomic constraints

Piermarco Cannarsa
;
Cristian Mendico
2025-01-01

Abstract

In this work, we extend Aubry-Mather theory to the case of control systems with nonholonomic constraints. In this framework, we consider an optimal control problem where admissible trajectories are solutions of a control-affine equation. Such an equation is associated with a family of smooth vector fields that satisfy the Hörmander condition, which implies the controllability of the system. In this case, the Hamiltonian fails to be coercive, so results for Tonelli Hamiltonians cannot be applied. To overcome these obstacles, we develop an intrinsic approach based on the metric properties of the geometry induced on the state space by the sub-Riemannian structure.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MAT/05
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Optimal control, nonholonomic constraints, Aubry-mather theory, Hamilton-Jacobi equations
Cannarsa, P., Mendico, C. (2025). Aurby-Mather theory for optimal control systems with nonholonomic constraints. MATHEMATISCHE ANNALEN, 392(4), 5065-5106 [10.1007/s00208-025-03220-8].
Cannarsa, P; Mendico, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
PMC-Mnd_MAAN.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 24.54 MB
Formato Adobe PDF
24.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/438143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact