By renormalization-group methods we obtain nonperturbative results about a d=1 system of interacting spinless fermions in a periodic potential when the conduction band is filled. Both the strength of the interaction and the amplitude of the periodic potential are assumed to be small. We determine that the large-distance asymptotic behavior of the two-point Schwinger function is anomalous and described by two critical indices, explicitly computed by convergent series, related to the renormalization of the spectral gap and of the discontinuity at the Fermi surface.

Bonetto, F., Mastropietro, V. (1997). Critical indices in a d=1 filled-band Fermi system. PHYSICAL REVIEW. B, CONDENSED MATTER, 56(3), 1296-1308 [DOI:10.1103/PhysRevB.56.1296].

Critical indices in a d=1 filled-band Fermi system

MASTROPIETRO, VIERI
1997-01-01

Abstract

By renormalization-group methods we obtain nonperturbative results about a d=1 system of interacting spinless fermions in a periodic potential when the conduction band is filled. Both the strength of the interaction and the amplitude of the periodic potential are assumed to be small. We determine that the large-distance asymptotic behavior of the two-point Schwinger function is anomalous and described by two critical indices, explicitly computed by convergent series, related to the renormalization of the spectral gap and of the discontinuity at the Fermi surface.
1997
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - FISICA MATEMATICA
English
Con Impact Factor ISI
DIMENSIONAL ELECTRON-GAS; INTERACTING FERMIONS; CRITICAL EXPONENTS; LUTTINGER MODEL; BETA-FUNCTION; 2 DIMENSIONS; SURFACE; LIQUID; BEHAVIOR
http://prb.aps.org/abstract/PRB/v56/i3/p1296_1
Bonetto, F., Mastropietro, V. (1997). Critical indices in a d=1 filled-band Fermi system. PHYSICAL REVIEW. B, CONDENSED MATTER, 56(3), 1296-1308 [DOI:10.1103/PhysRevB.56.1296].
Bonetto, F; Mastropietro, V
Articolo su rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/43752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact