We consider the static Holstein model, describing a chain of fermions interacting with a classical phonon field, when the interaction is weak and the density is a rational number p = P/Q, with P, Q relative prime integers. We show that the energy of the system, as a function of the phonon field, has one (if Q is even) or two (if Q is odd) stationary points, defined up to a lattice translation, which are local minima in the space of fields periodic with period equal to the inverse of the density.

Benfatto, G., Gentile, G., & Mastropietro, V. (1998). Peierls instability for the Holstein model with rational density. JOURNAL OF STATISTICAL PHYSICS, 92, 1071-1113 [10.1023/A:1023052812507].

Peierls instability for the Holstein model with rational density

BENFATTO, GIUSEPPE;MASTROPIETRO, VIERI
1998

Abstract

We consider the static Holstein model, describing a chain of fermions interacting with a classical phonon field, when the interaction is weak and the density is a rational number p = P/Q, with P, Q relative prime integers. We show that the energy of the system, as a function of the phonon field, has one (if Q is even) or two (if Q is odd) stationary points, defined up to a lattice translation, which are local minima in the space of fields periodic with period equal to the inverse of the density.
Pubblicato
Rilevanza internazionale
Articolo
Sì, ma tipo non specificato
Settore MAT/07 - Fisica Matematica
English
Con Impact Factor ISI
Fermi systems; Peierls instability
Benfatto, G., Gentile, G., & Mastropietro, V. (1998). Peierls instability for the Holstein model with rational density. JOURNAL OF STATISTICAL PHYSICS, 92, 1071-1113 [10.1023/A:1023052812507].
Benfatto, G; Gentile, G; Mastropietro, V
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
JSP_98_BGM.pdf

accesso aperto

Descrizione: Articolo pubblicato
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2108/43748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact