Suppose B is a unital algebra which is an algebraic product of full matrix algebras over an index set X. A bijection is set up between the equivalence classes of irreducible representations of B as operators on a Banach space and the sigma -complete ultrafilters on X (Theorem 2.6). Therefore, if X has less than measurable cardinality (e.g. accessible), the equivalence classes of the irreducible representations of B are labeled by points of X, and all representations of B are described (Theorem 3.3).
Guido, D., & Tuset, L. (2001). Representations of the direct product of matrix algebras. FUNDAMENTA MATHEMATICAE, 169(2), 145-160.
Tipologia: | Articolo su rivista |
Citazione: | Guido, D., & Tuset, L. (2001). Representations of the direct product of matrix algebras. FUNDAMENTA MATHEMATICAE, 169(2), 145-160. |
URL: | http://journals.impan.gov.pl/fm/Inf/169-2-4.html |
IF: | Con Impact Factor ISI |
Lingua: | English |
Settore Scientifico Disciplinare: | Settore MAT/05 - Analisi Matematica |
Revisione (peer review): | Sì, ma tipo non specificato |
Tipo: | Articolo |
Rilevanza: | Rilevanza internazionale |
Stato di pubblicazione: | Pubblicato |
Data di pubblicazione: | 2001 |
Titolo: | Representations of the direct product of matrix algebras |
Autori: | |
Autori: | Guido, D ; Tuset, L |
Appare nelle tipologie: | 01 - Articolo su rivista |