Today, Moon exploration is driven by the desire to expand the human presence beyond Earth and to use its resources. This requires the development of reliable navigation systems that can provide positioning information accurately and continuously on the lunar surface and orbits. Initiatives such as Moonlight (by ESA) and the Cislunar Autonomous Positioning System project (by NASA) are underway to address this challenge. The aim is to use ranging signals transmitted by satellites, similar to Earth’s GNSS, for lunar user positioning. This paper proposes a solution that involves local sensors deployed on the Moon surface to enhance the performance of the satellite system. These sensors can serve as differential reference stations, correcting satellite pseudorange measurements obtained by lunar surface receivers. The local sensor can also be used as a pseudolite, transmitting satellite-like signals to improve system availability and accuracy in obstructed areas. Additionally, the local sensor can act as an independent beacon that provides range and angle measurements. Higher navigation performance can be achieved by increasing the complexity of the system, depending on the implemented solution. This paper proposes and shows the concept, the intial design, and a preliminary definition of the protocol for the third solution. The three different solutions are compared in terms of position accuracy by exploiting the Cramér–Rao Lower-Bound formulation and Monte Carlo simulations. Finally, possible implementations for future use on the Moon are discussed.

Leonardi, M., Sirbu, G., Carosi, M., Stallo, C., Di Lauro, C. (2025). Moon Sensor Station to Improve the Performance of Lunar Satellite Navigation Systems. SENSORS, 25(12) [10.3390/s25123675].

Moon Sensor Station to Improve the Performance of Lunar Satellite Navigation Systems

Mauro Leonardi;Gheorghe Sirbu;Cosimo Stallo;
2025-01-01

Abstract

Today, Moon exploration is driven by the desire to expand the human presence beyond Earth and to use its resources. This requires the development of reliable navigation systems that can provide positioning information accurately and continuously on the lunar surface and orbits. Initiatives such as Moonlight (by ESA) and the Cislunar Autonomous Positioning System project (by NASA) are underway to address this challenge. The aim is to use ranging signals transmitted by satellites, similar to Earth’s GNSS, for lunar user positioning. This paper proposes a solution that involves local sensors deployed on the Moon surface to enhance the performance of the satellite system. These sensors can serve as differential reference stations, correcting satellite pseudorange measurements obtained by lunar surface receivers. The local sensor can also be used as a pseudolite, transmitting satellite-like signals to improve system availability and accuracy in obstructed areas. Additionally, the local sensor can act as an independent beacon that provides range and angle measurements. Higher navigation performance can be achieved by increasing the complexity of the system, depending on the implemented solution. This paper proposes and shows the concept, the intial design, and a preliminary definition of the protocol for the third solution. The three different solutions are compared in terms of position accuracy by exploiting the Cramér–Rao Lower-Bound formulation and Monte Carlo simulations. Finally, possible implementations for future use on the Moon are discussed.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore ING-INF/03
Settore IINF-03/A - Telecomunicazioni
English
Leonardi, M., Sirbu, G., Carosi, M., Stallo, C., Di Lauro, C. (2025). Moon Sensor Station to Improve the Performance of Lunar Satellite Navigation Systems. SENSORS, 25(12) [10.3390/s25123675].
Leonardi, M; Sirbu, G; Carosi, M; Stallo, C; Di Lauro, C
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
sensors-25-03675.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.18 MB
Formato Adobe PDF
2.18 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/436343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact