We prove the Sobolev-to-Lipschitz property for metric measure spaces satisfying the quasi curvature-dimension condition recently introduced in Milman (Commun Pure Appl Math, to appear). We provide several applications to properties of the corresponding heat semigroup. In particular, under the additional assumption of infinitesimal Hilbertianity, we show the Varadhan short-time asymptotics for the heat semigroup with respect to the distance, and prove the irreducibility of the heat semigroup. These results apply in particular to large classes of (ideal) sub-Riemannian manifolds.

Dello Schiavo, L., Suzuki, K. (2022). Sobolev-to-Lipschitz property on QCD -spaces and applications. MATHEMATISCHE ANNALEN, 384(3-4), 1815-1832 [10.1007/s00208-021-02331-2].

Sobolev-to-Lipschitz property on QCD -spaces and applications

Dello Schiavo L.
;
2022-01-01

Abstract

We prove the Sobolev-to-Lipschitz property for metric measure spaces satisfying the quasi curvature-dimension condition recently introduced in Milman (Commun Pure Appl Math, to appear). We provide several applications to properties of the corresponding heat semigroup. In particular, under the additional assumption of infinitesimal Hilbertianity, we show the Varadhan short-time asymptotics for the heat semigroup with respect to the distance, and prove the irreducibility of the heat semigroup. These results apply in particular to large classes of (ideal) sub-Riemannian manifolds.
2022
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/A - Analisi matematica
Settore MATH-03/B - Probabilità e statistica matematica
English
Con Impact Factor ISI
Quasi curvature-dimension condition
Sobolev-to-Lipschitz property
Sub-Riemannian geometry
Varadhan short-time asymptotics
Dello Schiavo, L., Suzuki, K. (2022). Sobolev-to-Lipschitz property on QCD -spaces and applications. MATHEMATISCHE ANNALEN, 384(3-4), 1815-1832 [10.1007/s00208-021-02331-2].
Dello Schiavo, L; Suzuki, K
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dello_Schiavo__Pub8__2022a.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 400.48 kB
Formato Adobe PDF
400.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/433704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact