This paper deals with local criteria for the convergence to a global minimiser for gradient flow trajectories and their discretisations. To obtain quantitative estimates on the speed of convergence, we consider variations on the classical Kurdyka - Lojasiewicz inequality for a large class of parameter functions. Our assumptions are given in terms of the initial data, without any reference to an equilibrium point. The main results are convergence statements for gradient flow curves and proximal point sequences to a global minimiser, together with sharp quantitative estimates on the speed of convergence. These convergence results apply in the general setting of lower semicontinuous functionals on complete metric spaces, generalising recent results for smooth functionals on R-n. While the non-smooth setting covers very general spaces, it is also useful for (non)-smooth functionals on R-n.

Dello Schiavo, L., Maas, J., Pedrotti, F. (2024). Local conditions for global convergence of gradient flows and proximal point sequences in metric spaces. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 377(6), 3779-3804 [10.1090/tran/9156].

Local conditions for global convergence of gradient flows and proximal point sequences in metric spaces

Dello Schiavo L.
;
2024-01-01

Abstract

This paper deals with local criteria for the convergence to a global minimiser for gradient flow trajectories and their discretisations. To obtain quantitative estimates on the speed of convergence, we consider variations on the classical Kurdyka - Lojasiewicz inequality for a large class of parameter functions. Our assumptions are given in terms of the initial data, without any reference to an equilibrium point. The main results are convergence statements for gradient flow curves and proximal point sequences to a global minimiser, together with sharp quantitative estimates on the speed of convergence. These convergence results apply in the general setting of lower semicontinuous functionals on complete metric spaces, generalising recent results for smooth functionals on R-n. While the non-smooth setting covers very general spaces, it is also useful for (non)-smooth functionals on R-n.
2024
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/A - Analisi matematica
English
Con Impact Factor ISI
Gradient flows in metric spaces
proximal point method
Kurdyka-Lojasiewicz inequality
Polyak-Lojasiewicz inequality
Simon-Lojasiewicz inequality
convergence rate
Dello Schiavo, L., Maas, J., Pedrotti, F. (2024). Local conditions for global convergence of gradient flows and proximal point sequences in metric spaces. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 377(6), 3779-3804 [10.1090/tran/9156].
Dello Schiavo, L; Maas, J; Pedrotti, F
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dello_Schiavo__Pub15_2024c.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 837.3 kB
Formato Adobe PDF
837.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/433685
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact