We prove that the Dean-Kawasaki-type stochastic partial differential equation partial derivative mu = del (root mu xi) + del (mu H(mu)) , with vector-valued space-time white noise xi, does not admit solutions for any initial measure and any vector-valued bounded measurable function H on the space of measures. This applies in particular to the pure-noise Dean-Kawasaki equation (H equivalent to 0). The result is sharp, in the sense that solutions are known to exist for some unbounded H.

Dello Schiavo, L., Konarovskyi, V. (2025). Ill-posedness of the pure-noise Dean–Kawasaki equation. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 30, 1-9 [10.1214/25-ECP702].

Ill-posedness of the pure-noise Dean–Kawasaki equation

Dello Schiavo L.
;
2025-01-01

Abstract

We prove that the Dean-Kawasaki-type stochastic partial differential equation partial derivative mu = del (root mu xi) + del (mu H(mu)) , with vector-valued space-time white noise xi, does not admit solutions for any initial measure and any vector-valued bounded measurable function H on the space of measures. This applies in particular to the pure-noise Dean-Kawasaki equation (H equivalent to 0). The result is sharp, in the sense that solutions are known to exist for some unbounded H.
2025
Pubblicato
Rilevanza internazionale
Articolo
Esperti anonimi
Settore MATH-03/B - Probabilità e statistica matematica
English
Con Impact Factor ISI
Dean-Kawasaki equation
SPDE
Wasserstein diffusion
Dello Schiavo, L., Konarovskyi, V. (2025). Ill-posedness of the pure-noise Dean–Kawasaki equation. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 30, 1-9 [10.1214/25-ECP702].
Dello Schiavo, L; Konarovskyi, V
Articolo su rivista
File in questo prodotto:
File Dimensione Formato  
Dello_Schiavo__Pub20_2025a.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 402.85 kB
Formato Adobe PDF
402.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2108/433683
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact